История одного строительства.
ТВиттер
   
 
фундамент дома фундамент дома наш дом скважина на воду наш дом стропила крыши септик фундамент дома сруб

 
Затраты на строительство:
- за 2014 год
- за 2013 год
- за 2012 год
- за 2011 год
- за 2010 год
- за 2009 год
- за 2006 год

 

Коэффициент теплопередачи стены


Сопротивление теплопередаче ограждающих конструкций — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требуют 73 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требуют 73 правки.

Сопротивление теплопередаче ограждающих конструкций, коэффициент теплосопротивления, теплосопротивление, термическое сопротивление — один из важнейших теплотехнических показателей строительных материалов.

При общих равных условиях, это отношение разности температур на поверхностях ограждающей конструкции к величине мощности теплового потока (теплопередача за один час через один квадратный метр площади поверхности ограждающей конструкции, Q˙A{\displaystyle {\dot {Q}}_{A}}) проходящего сквозь нее, то есть R=ΔT/Q˙A{\displaystyle R=\Delta T/{\dot {Q}}_{A}}. Сопротивление теплопередаче отражает теплозащитные свойства ограждающей конструкции и складывается из термических сопротивлений отдельных однородных слоев конструкции.

В Международной системе единиц (СИ) сопротивление теплопередаче ограждающей конструкции измеряется разностью температуры в кельвинах (либо в градусах Цельсия) у поверхностей этой конструкции, требуемой для переноса 1 Вт мощности энергии через 1 м2 площади конструкции (м2·K/Вт или м2·°C/Вт).

Термическое сопротивление отдельного слоя ограждающей конструкции или однородного ограждения[1]R=δλ{\displaystyle R={\frac {\delta }{\lambda }}}, где δ — толщина слоя материала (м), λ — коэффициент теплопроводности материала[2] (Вт/[м·°С]). Чем больше полученное значение R, тем выше теплозащитные свойства слоя материала. Сопротивление теплопередаче ограждающей конструкции равно сумме термических сопротивлений слоев из однородных материалов, составляющих эту конструкцию.

Для примера рассчитаем теплопотери помещения верхнего этажа дома через крышу. Примем температуру внутреннего воздуха +20°С , а наружного −10°С. Таким образом, температурный перепад составит 30°С (или 30 К). Если, например, потолок комнаты со стороны крыши изолирован стекловатой с низкой плотностью толщиной 150 мм, то сопротивление теплопередачи крыши составит около R=2,5 кв.м*град/Вт. При таких значениях температурного перепада и сопротивления теплопередаче, теплопотери через один квадратный метр крыши равны: 30 / 2,5 = 12 Вт. При площади потолка комнаты 16 м2 мощность оттока тепла только через потолок составит 12*16=192 Вт.

Согласно «СНиП 1954» R многослойных ограждений = Rв + R1 + R2 + … + Rн, где Rв — сопротивление теплопереходу у внутренней поверхности ограждения, R1 и R2 — термические сопротивления отдельных слоёв ограждения, Rн — сопротивление теплопереходу у наружной поверхности ограждения[1].

Теплопроводность некоторых материалов[править | править код]

Материал В сухом состоянии
(нулевая влажность)
λ, Вт/м·°C
При влажности в условиях эксплуатации «Б»
λ, Вт/м·°C
Влажность
%[3]
Кладка из полнотелого керамического кирпича на цементно-песчаном растворе 0,56 0,81 2
Кладка из полнотелого силикатного кирпича на цементно-песчаном растворе 0,7 0,87 4
Сосна и ель поперёк волокон 0,09 0,18 20
Фанера клееная 0,12 0,18 13
Плиты древесно-волокнистые и древесно-стружечные плотностью 200 кг/м3 0,06 0,08 12
Опилки древесные 0,09 Вт/м·°C
(0,08 ккал/м·час·°C[4])
(средняя влажность в наружных ограждениях)
Листы гипсовые обшивочные (сухая штукатурка) плотностью 800 кг/м3 0,15 0,21 6
Плиты минераловатные из каменного волокна плотностью 180 кг/м3 0,038 0,048 5
Плиты из пенополистирола плотностью до 10 кг/м3 0,049 0,059 10
  • Свод правил СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 / Минрегион России. — М., 2012. — 96 с.
  • Глава 3. Строительная теплотехника : § 3. Нормы сопротивления теплопередаче ограждений // Строительные нормы и правила. Часть II. Нормы строительного проектирования / Гос. ком. Совета Министров СССР по делам строительства. — М.: Гос. изд-во лит. по стр-ву и архитектуре, 1954. — С. 150—154. — 404 с.

ru.wikipedia.org

Теплопроводность строительных материалов, что это, таблица

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

Содержание статьи

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 - 150 кг/м30,043-0,06
Пеностекло, крошка, 151 - 200 кг/м30,06-0,063
Пеностекло, крошка, 201 - 250 кг/м30,066-0,073
Пеностекло, крошка, 251 - 400 кг/м30,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 - 220 кг/м30,057-0,063
Пеноблок 221 - 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата 0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотность Коэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор 0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

stroychik.ru

Определение коэффициента теплопередачи материалов

Для чего подбирают определенную толщину стены дома? 

 Естественно для обеспечения необходимых условий проживания: 

- прочности и устойчивости; 
- её теплотехнических характеристик; 
- комфортности проживания в помещении со стенами из данного материала. 

Согласно СНИПу 23-02-2003 нормативное значение сопротивления теплопередаче внешней стены дома зависит от региона. В таблице  необходимое сопротивление теплопередаче наружней стены в Красноярске будет 4,84 м2·°C/В.  

Вычисляем реальное сопротивление теплопередачи стены дома

Значение коэффициента теплопередачи стен зависит от типа и толщины каждого отдельно взятого материала, используемого для их возведения. Для определения этого коэффициента используют показатель Λ - W/(m²·K), т.е нужно разделить толщину материала (м) на коэффициент теплопроводности.

Пример:
Определим коэффициент теплопередачи наружней стены из 3D-панелей

 

Пенополистирол ПСБ-С-25 - 300 мм

Цементная штукатурка - 250 мм

 

 

 

1. В первую очередь следует определить коэффициенты теплопроводности применяемых материалов. Выбираем из таблицы:
пенополистирол ПСБ-С25   - 0,038  Вт/м*К
штукатурка цементная            - 0,9 Вт/м*К

2. Теперь определяем коэффициенты сопротивления теплопередачи по формуле:

R =D/λ, где D - толщина слоя в м;  λ - коэффициент теплопроводности W/(m²·K) взятый из таблицы

0,30 / 0,038 = 7,89
0,25 / 0,9 = 0,28 

Наименование материала Толщина материала, м Коэффициент теплопроводности, Вт/м*К Коэффициент сопротивление теплопередачи, м2 °С/Вт
Пенополистирол ПСБ-С25 0,30 0,038 7,89
Штукатурка цементная 0,25 0,9 0,28

3. Теперь просуммируем полученные величины и узнаем общий коэффициент сопротивление теплопередачи наружней стены 7,89 + 0,28 = 8,17 W/(m²·K)

Коэффициент сопротивление теплопередачи наружной стены из 3D-панелей  8,17 W/(m²·K) Рекомендуемое значение для Красноярска 4,84 (из таблицы), таким образом стена из 3D-панелей не только удовлетворяет «строгому» СНиП 23-02-2003, но и превосходит этот показатель, что гарантирует комфортное проживание в таком доме и позволяет экономить ваши деньги на отоплении и кондиционировании.

Определяем толщину стены из других строительных материалов что бы она соответствовала коэффициенту сопротивление теплопередачи наружней стены 8,17 W/(m²·K), как в 3D-панелях.

Используем формулу: D=λ*R, где
D - толщина слоя в м;
λ - коэффициент теплопроводности, W/(m²·K) взятый из таблицы;
R - Коэффициент сопротивление теплопередачи, м2 °С/Вт (в нашем случае это 8,17)

Наименование материала Коэффициент теплопроводности, Вт/м*К Толщина стены, м
3D-панель 0,55
Липа, береза, клен, дуб (15% влажности) 0,15 1,23
Керамзитобетон 0,2 1,63
Пенобетон 1000 кг/м3 0,3 2,45
Сосна и ель вдоль волокон 0,35 2,86
Дуб вдоль волокон 0,41 3,35
Кладка из кирпича на цементно-песчасном растворе 0,87 7,11
Железобетон 1,7 13,89

Мы видим из таблицы, что при одинаковом коэффициенте сопротивление теплопередачи 8,17 м2 °С/Вт толщина стен из различных строительных материалов разная, что влияет на размеры и стоимость дома.

Толщина стен из 3D-панелей 550 мм, а если взять кирпич без утеплителя то нужно стоить стену толщиной 7110 мм.

 

polipak-10.ru

Теплопроводность строительных материалов

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\d

www.tproekt.com

ГОСТ Р 54851-2011 Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК "Трансстрой"СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

files.stroyinf.ru

1.5 Теплотехнический расчет ограждающих конструкций

В целях сокращения потерь тепла в зимний период и поступлений тепла в летний период при проектировании здания производится теплотехнический расчет стеновых ограждений и перекрытий.

  1. По приложению 1 СП 23-101-2004 определяем зону влажности. Для г. Ульяновска - нормальная зона влажности.

  2. По таблице 1 определяем влажностный режим помещений - сухой режим.

  3. По приложению 2 определяем условия эксплуатации ограждающих

конструкций в зависимости от влажностного режима помещений и зоны

влажности района строительства - А.

  1. Определяем градусо-сутки отопительного периода

ГСОП = (tв-tн)zот.пер.

ГСОП = (20 + 3.1) х 214 = 4943.4°С ·сут, где

tв- расчетная температура внутреннего воздуха, °С, принимаемая согласно ГОСТ 12.1.005-88 и нормам проектирования соответствующих зданий и сооружений

tв = 20°С

tн- расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее

tн =-3.1°С

zот.пер - средняя температура, °С, и продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С zот.пер=214сут

1.5.1 Стеновое ограждение

Требуемое сопротивление теплопередаче стеновых ограждающих конструкций, отвечающее санитарно-гигиеническим и комфортным условиям, определяют по таблице 16

R0тр =3.13м2·°С/Вт

Стеновое ограждение состоит из следующих слоев

Наименование слоя

Толщина, мм

λ, Вт/(м·°С)

R, м2-°С/Вт

Штукатурка

15

0.7

0.021

Газобетон

200

0.22

0.909

Утеплитель "Роквул"

100

0.047

2.128

Воздушная прослойка

22

Облицовка

10

2.91

0.003

Термическое сопротивление R, м2·°С/Вт, слоя многослойной ограждающей кон­струкции, а также однородной (однослойной) ограждающей конструкции

, где

δ - толщина слоя, м

λ - расчетный коэффициент теплопроводности материала слоя, Вт/(м·°С), принимаемый по прил. 3

Суммарное сопротивление слоев ограждающей конструкции (сопротивление облицовки не учитываем)

Rк=3.059м2·°С/Вт

Сопротивление теплопередаче ограждающей конструкции

αв - коэффициент теплоотдачи внутренней поверхности ограждающих конструк­ций, принимаемый по таблице 4

αв=8.7Вт/м2·°С

αн - коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающих конструкций, принимаемый по таблице 6

αн=12Вт/м2·°С

Из-за наличия мостиков холода в виде крепления конструкции навесного фасада, принимаем решение увеличить толщину утеплителя, закладываемого в наружные стены до 120мм, что позволяет устранить негативное влияние креплений.

1.5.2 Покрытие гостиницы

Требуемое сопротивление покрытия теплопередаче, отвечающее санитарно-гигиеническим и комфортным условиям, определяют по таблице 1б

R0тр =4.6472м2·°С/Вт

Покрытие состоит из следующих слоев

Наименование слоя

Толщина, мм

λ, Вт/(м·°С)

R, м°С/Вт

СПН

10

58

0

Железобетон

70

1.92

0.036

Пароизоляция "Пароизол"

3

0.17

0.018

Утеплитель "Ursa"

180

0.041

4.39

Цементная стяжка

30

0.76

0.039

Рулонный ковер

3

0.17

0.018

Термическое сопротивление R, м2·°С/Вт, слоя многослойной ограждающей кон­струкции, а также однородной (однослойной) ограждающей конструкции

, где

δ - толщина слоя, м

λ - расчетный коэффициент теплопроводности материала слоя, Вт/(м·°С), принимаемый по прил. 3

Суммарное сопротивление слоев ограждающей конструкции (сопротивление облицовки не учитываем)

Rк=4.501м2·°С/Вт

Сопротивление теплопередаче ограждающей конструкции

αв - коэффициент теплоотдачи внутренней поверхности ограждающих конструк­ций, принимаемый по таблице 4

αв=8.7Вт/м2·°С

αн - коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающих конструкций, принимаемый по таблице 6

αн=12Вт/м2·°С

studfile.net

Толщина искомого слоя ограждения:

Rо=Rо.пр.=Rо+…+Rх +…+Rn+Rн=

Rх=Rотр– (Rв+R1+…+Rn+Rн)

δх= λх×Rх

Для наружной стены:

Rх= 3,046 – (1/8,7+0,02/0,7+0,3/0,67+0,12/0,76+1/23) = 3,046 – 0,7927 = 2,253 м2×оС/Вт

δх= 0,05×2,253 = 0,12 м = 120 мм

Для чердачного перекрытия:

Rх= 4,016 – (1/8,7+0,22/1,92+0,002/0,17+0,01/0,52+1/12) = 4,016 – 0,332 = 3,684 м2×оС/Вт

δх= 0,041×3,684 = 0,151 м = 160 мм

Для перекрытия над неотапливаемым подвалом:

Rх= 4,016 – (1/8,7+0,02/0,33+0,02/0,52+0,22/1,92+1/12) = 4,016 – 0,412 = 3,604 м2×оС/Вт

δх= 0,041×3,604 = 0,148 м = 150 мм

Фактическое сопротивление теплопередаче ограждения:

Rо=Rв+ΣRi+Rн

Для наружной стены:

Rо= 1/8,7+0,02/0,7+0,3/0,67+0,12/0,05+0,12/0,76+1/23 = 3,193 м2×оС/Вт

Для чердачного перекрытия:

Rо= 1/8,7+0,22/1,92+0,002/0,17+0,16/0,041+0,01/0,52+1/12 = 4,246 м2×оС/Вт

Для перекрытия над неотапливаемым подвалом:

Rо= 1/8,7+0,02/0,33+0,02/0,52+0,15/0,041+0,22/1,92+1/12 = 4,071 м2×оС/Вт

Для окон и балконных дверей:

Rо= 0,618 м2×оС/Вт. Двухкамерный стеклопакет из стекла с мягким селективным покрытием в ПВХ переплетах.

Для наружных дверей:

Rо= 0,6×Rо(НС)тр= 0,6×= 0,827 м2×оС/Вт

Коэффициент теплопередачи ограждения:

kогр= 1/Rо

Для наружной стены:

kогр= 1/3,193 = 0,313 Вт/(м2×оС)

Для чердачного перекрытия:

kогр= 1/4,246 = 0,236 Вт/(м2×оС)

Для перекрытия над неотапливаемым подвалом:

kогр= 1/4,071= 0,246 Вт/(м2×оС)

Для окон

kогр=kдо–kнс= 1/0,618 – 0,3132 = 1,305 Вт/(м2×оС)

Для балконных дверей:

kогр= 1/0,618 = 1,618 Вт/(м2×оС)

Для наружных дверей:

kогр= 1,67/= 1,211 Вт/(м2×оС)

Значения термических сопротивлений и коэффициентов теплопередачи наружных ограждений здания

Наименование наружного ограждения

Условное обозначение

Термическое сопротивление

Rогр, м2×оС/Вт

Коэффициент теплопередачи

kогр, Вт/(м2×оС)

Стена

НС

3,19

0,31

Чердачное перекрытие

Пт

4,25

0,24

Перекрытие над подвалом

Пл

4,07

0,25

Окно

ДО(ТО)

0,62

1,31

Балконная дверь

БД

0,62

1,62

Наружная дверь

НД

0,83

1,21

Т.к. наружная расчетная температура tн= – 30°С, расчетные температуры воздуха в жилых комнатах принимаю из таблицы.

Расход теплоты за отопительный период

βпот= 1,1 – коэффициент, учитывающий непроизводительные потери теплоты системой отопления

Удельная тепловая характеристика здания

– поправочный температурный коэффициент

Сравнение со справочным значением

4. Расчет отопительных приборов

Рассчитываю стояк №12

Устанавливаем чугунные радиаторы типа МС – 140 – 98. В помещениях 122…422 устанавливаем по два отопительных прибора.

Тепловая мощность каждого прибора:

110(110): Qпр= 644/1 = 644 Вт

210(210): Qпр= 546/1 = 546 Вт

310(310): Qпр= 546/1 = 546 Вт

410(410):Qпр= 649/1 = 649Вт

Тепловая нагрузка стояка

Qст = ΣQпр = 644+2×546+649= 2385Вт

Массовый расход воды в стояке:

,

где ср– удельная теплоемкость воды,

tr(о)– температура воды на входе в стояк (на выходе из стояка)

Средняя температура воды в каждом приборе стояка

, где

ΣQ– суммарная тепловая мощность приборов, подключенных к стояку выше рассчитываемого прибора;

Qпр– тепловая мощность рассчитываемого прибора;

α – коэффициент затекания воды в прибор.

Разность средней температуры воды в приборе tпр и температуры воздуха в помещении tв

;

;

;

;

Номинальный тепловой поток радиатора,

соответствующий потоку теплоты приразности температур теплоносителя и воздуха Δtср= 70оС, расходе теплоносителя через приборGпр= 360 кг/ч и атмосферном давлении 1013 КПа.

, где

φк– комплексный коэффициент приведенияQн.п.к расчетным условиям

, где

n= 0,3; р = 0,01 – показатели степени;

с = 1,0; ψ = 1 – коэффициенты, соответствующие определенному виду отопительных приборов;

b≈1,0 – коэффициент учета атмосферного давления в данной местности;

Gпр– массовый расход воды, проходящий через рассчитываемый прибор

, тогда из таблицы

studfile.net

Теплотехнический расчет покрытия:

Определяю конструкцию покрытия (Рис.2)

`

  1. Усиленная защитная гидроизоляция рубероид 3слоя

  2. Эффективный утеплитель пенополистирол ГОСТ 15588-70*

  3. Пароизоляция

  4. Железобетонная плита

Значения характеристик материалов, составляющих конструкцию покрытия:

Материал слоя

Толщина слоя,

мм

Коэффициент

теплопроводности

,

1

Усиленная защитная гидроизоляция рубероид 3 слоя

10

0,17

2

Эффективный утеплитель пенополистирол ГОСТ 15588-70*

0,05

3

Пароизоляция

-

не учит

4

Железобетонная плита

220

2,04

Определение градусо-суток отопительного периода СНиП 23-02-2003. «Тепловая защита зданий»

м2 ·°С/Вт

Определение значения сопротивления теплопередаче СНиП 23-02-2003 «Тепловая защита зданий»

Расчет толщины утеплителя

1.Вычисление сопротивления теплообмену

на внутренней поверхности Rв== = 0,115

на наружной поверхности Rн=== 0,043

2. Определение термического сопротивления слоев конструкции с известными толщинами:

3. Сопротивление теплопередачи

4. Принимаю значение утеплителя

5. Вычисляю термическое сопротивление утеплителя после унификации

6. Определение фактического термического сопротивления

7. Определение коэффициента теплопередачи покрытия:

Теплотехнический расчет покрытия над подвалом:

Определяю конструкцию покрытия над подвалом (Рис.3)

  1. Линолеум

  2. Два слоя прессованного картона

  3. Эффективный утеплитель пенополистирол ГОСТ15588-70*

  4. Цементно-песчаная стяжка

  5. Железобетоннаяплита

Значения характеристик материалов, составляющих конструкцию покрытия над подвалом:

Материал слоя

Толщина слоя,

мм

Коэффициент

теплопроводности

,

1

Линолеум

5

0,38

2

Прессованный картон

20

0,18

3

Эффективный утеплитель пенополистирол ГОСТ 15588-70*

0,05

4

Цементно-песчаная стяжка

30

0,93

5

Железобетонная плита

220

2,04

Определение значения n - коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху и приведен в таблице 6 СНиП 23-02-2003 «Тепловая защита зданий»

,

Определение значения сопротивления теплопередаче СНиП 23-02-2003 «Тепловая защита зданий»

,

где - нормирующий температурный перепад принимаем по таблице 5 СНиП 23-02-2003 «Тепловая защита зданий»

Расчет толщины утеплителя

1.Вычисление сопротивления теплообмену

на внутренней поверхности Rв== = 0,115

на наружной поверхности Rн=== 0,043

2. Определение термического сопротивления слоев конструкции с известными толщинами:

3. Сопротивление теплопередачи

4. Принимаю значение утеплителя

5. Вычисляю термическое сопротивление утеплителя после унификации

6. Определение коэффициента теплопередачи покрытия над подвалом:

studfile.net


Смотрите также




© 2008- GivoyDom.ru