|
Каркасы для стены в грунтеАрматурные каркасы для стены в грунте: характеристики, применение и производствоОсобенности методаПо сути своей, метод схож с заливкой ленточного фундамента, для которого дополнительно было решено купить арматурные каркасы для стены в грунте. В заранее подготовленные траншеи укладывается укрепляющая основа из скрепленных отрезков проката. Залитое ЖБИ дает возможность защитить строительную площадку под землей до момента завершения установки всех внутренних конструкций, как перекрытия, стены, пол. Учитывая, что на конструкцию постоянно будет действовать нагрузка со всех сторон, ее выполняют максимально усиленной. По этой причине укрепляющая основа монтируется зачастую из пространственных арматурных каркасов. Это значит, что конструкция представляет собой объемный элемент, например, из нескольких плоских каркасов, соединенных поперечными отрезками проката. Цены арматурных каркасов для стены в грунте данного типа выше, чем например, у плоских арматурных каркасов, но они гарантируют максимальные сроки службы всего строения. Методы производства и примененияЗадача формирования объемной конструкции выполняется двумя основными методами. В первом случае используют уже описанные сетки, во втором – выстраивают вплотную ряд из цилиндрических основ, идентичных буронабивным сваям. В таком случае применяют колонны из вертикально расположенных прутков соединенных вместе. Производство арматурных каркасов для стены в грунте этого типа подразумевают сварку прямых компонентов с кольцами. Купить арматурные каркасы актуально в случае строительства ниже уровня земли, то есть: тоннелей, подземных складов и гаражей, переходов, резервуаров, противофильтрационных завес и фундаментов различного назначения. В зависимости от структуры и свойств грунта застройщик может выбрать еще две технологии монтажа: мокрая и сухая. Их выбор напрямую зависит от влажности почвы. Сухой предполагает минимальные затраты, что выгодно в совокупности с тем фактом, что цены арматурных каркасов для стены в грунте приемлемы. Для полноценного использования методики необходимо удостовериться, что существующая почва достаточно прочна, а так же под ее поверхностью не проходят течения. Возводить крупные постройки на грунтах с высокой влажностью можно с использованием мокрой технологии. Для монтажа укрепляющего основания применяется все та же объемная конструкция, производство арматурных каркасов для которой идет с использованием различных типов арматурного проката. Она эффективна несмотря на нестабильность почвы, но в некоторых случаях требуется дополнительное укрепление стен, подготовленной под заливку траншеи. В результате, усиленное ЖБИ позволяет монтировать перекрытия, стены и прочие элементы. Этапы проведения работ, ограничения![]() Вне зависимости от выбранной технологии установки бетонной стены в грунте, процесс подразделяется на несколько отдельных шагов. В первую очередь, перед тем, как купить арматурные каркасы для стены в грунте, нужно оборудовать для них траншею. В этом случае применяют землеройную технику, различной конструкции, как ковшовые или фрезерные установки. В этом случае возможна установка стены в грунте на глубину до сотни метров, при ширине траншеи в пределах 1-1,5 метров, изредка проекты требуют увеличения толщины до двух метров. Затем, в соответствии с утвержденным проектом, в траншею устанавливаются закладные элементы, то есть арматурные каркасы для стены в грунте. Каркасы соединяются в большие объемные конструкции, которые впоследствии заливаются бетоном. Хоть производства арматурных каркасов для стены в грунте предлагают разнообразные изделия, в некоторых ситуациях их использование невозможно. Методику невозможно полноценно реализовать в условиях строительства, при наличии в грунте сильных течений, высокой степени рыхлости почвы или обнаружении на территории строительства полуразрушенной каменной кладки. Точно так же невозможно проводить работы при наличии больших обломков бетона или скоплений металла, больших пустот. Даже в случае обнаружения небольших течений под землей, которые не станут препятствием к проведению работ, прежде чем купить арматурные каркасы для стены в грунте, необходимо исключить попадание воды в траншею. С этой целью создаются противофильтрационные завесы из твердых глин, которыми обрабатываются стенки. Траншеи при реализации проекта могут разрабатываться целиком, либо по отдельным участкам. Производство арматурных каркасов для стены в грунте в этом случае подразумевает применение проката с рифлением. Готовая основа должна быть до 120 мм меньше ширины траншеи. Перед погружением металл смачивают, что позволяет минимизировать налипание глины на поверхность и, как следствие, значительно повышает сцепление прутков с бетоном. При заливке стены в грунте используются трубы, устанавливаемые в траншею. Их диаметр обычно меньше ширины траншеи на 50 мм и через пять часов с момента заливки их извлекают, а полученные полости заливают раствором. Данный принцип действует при глубине “стены в грунте” до 15 метров, а при увеличении этого аспекта необходимо установить ограничитель. Цены арматурных каркасов для стены в грунте в этой ситуации оказываются выше, так как к пространственной основе крепятся металлические листы, выполняющие роль ограничителей. Данный компонент зачастую усиливается путем приваривания балок, которые выполняют функцию ребер жесткости. Собственно, производство арматурных каркасов для стены в грунте представляет собой многоэтапный процесс. Начинается все с проекта, который позволяет просчитать основные параметры укрепляющей конструкции, после чего начинается создание чертежа каркаса. Далее из нескольких плоских сеток монтируют объемную систему с перемычками. Компоненты свариваются, либо вяжутся проволокой. Второй метод редко используется при серьезных объемах строительства, так как он не достаточно надежен, потому цены арматурных каркасов для стены в грунте могут быть менее высокими, но такая экономия не может быть оправдана. Подготовленные элементы конструкции транспортируются на объект, где окончательно подготавливаются для монтажа в траншею. Завод «АРМИКОН» обладает достаточными мощностями для производства арматурных каркасов для стены в грунте любой сложности и объемов. Предлагаем купить арматурные каркасы для стены в грунте по оптимальной стоимости и высочайшего качество на заводе «АРМИКОН». Стена в грунте — ВикипедияМатериал из Википедии — свободной энциклопедии Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2015; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 марта 2015; проверки требуют 14 правок. Грейферный экскаватор для выборки грунта под стену в грунтеСтена в грунте — метод возведения подземных или заглублённых сооружений, фундаментов, ограждений котлованов, подпорных стен, a также противофильтрационных завес c использованием при разработке грунта тиксотропного глинистого раствора. Суть метода заключается в том, что узкие и глубокие траншеи разрабатывают под защитой бентонитовой суспензии, которая оказывает избыточное гидростатическое давление на вертикальную поверхность, что способствует укреплению стен и оберегает траншею от разрушения. Стена в грунте может возводиться глубиной до 40, а при использовании спецоборудования — до 60 метров, а ширина траншеи при этом может быть очень узкой — от 0,4 до 1 м. Стена становится ограждающей конструкцией, а кроме того, может выполнять функцию несущего элемента подземных сооружений. Метод может применяться в практически в любых нескальных грунтах, кроме рыхлых насыпных, текучих и плывунных. Наиболее эффективно использование метода в сложных гидрогеологических условиях при относительно неглубоком залегании водоупорных грунтов, a также вблизи зданий или их фундаментов. По конструкции стены в грунте могут быть:[2]
одноярусные — из панелей с вертикальными стыками. многоярусные — из панелей с вертикальными и горизонтальными стыками. на примере монолитной бетонной стены в грунте.
После полного застывания бетона приступают к разработке грунта под котлован сооружения, а также проводят работы по креплению стены.[3] Для разработки грунта в траншее применяется оборудование двух типов: плоский грейфер (ковш) и гидравлическая фреза. С помощью грейфера можно разрабатывать только дисперсные грунты (пески, глины), при этом велика вероятность отклонения «стены в грунте» от вертикали. Гидравлическая фреза может разрабатывать все типы мягких и твердых грунтов – от дисперсных до полускальных, при этом обеспечивается высокая точность, а поверхность «стены в грунте» после откопки котлована остается довольно ровной и готовой под облицовку.[4] Особенности производства арматурных каркасов для стены в грунтеОсновные особенности![]() Конструктивно рассматриваемый вариант укрепляющей основы – это пространственный арматурный каркас. Как и любое изделие данного уровня, основа создается из более простых компонентов по отработанной схеме. В частности, используются плоские арматурные каркасы, соединенные в объемную структуру большой длины. Последний параметр связан с большой глубиной монтажа рамы, которая может достигать десятков метров. Вдоль детали конструкции укладываются прутки большой толщины, что обеспечит способность выдерживать значительные воздействия при эксплуатации. Таким образом, профили исключают повреждение бетонной основы, которая без жесткого основания не способна противостоять изгибам и скручиваниям с высокой эффективностью. Под прямым углом к указанным компонентам монтируются поперечные детали, которые выполняют роль распределяющей сетки, передающей равномерно усилие на всю поверхность ЖБИ. Производство арматурных каркасов для стены в грунте подразумевает применение нескольких плоских каркасов, соединенных в цельную систему методом точечной сварки. За счет этого вся структура приобретает жесткость и способность надежно закрепиться в бетоне. Автоматический/полуавтоматический метод дает возможность создавать даже такие сложные системы, как арматурные каркасы для буронабивных свай, которые требуют высокой точности и специализированного оборудования. По сложности “стены” им не уступают, в частности по той причине, что обычно структуры имеют большую длину. Выпуск продукции непосредственно на месте строительства значительно осложняется отсутствием специального оборудования, позволяющего зафиксировать и сварить компоненты, сохраняя определенную геометрию. Важно отметить: вне зависимости от того, что цены арматурных каркасов для стены в грунте превосходят некоторые аналоги, в рамках реализации проекта в целом они дают возможность сэкономить. Изначально это связано с тем, что готовый компонент значительно проще монтировать в подготовленную траншею, а это экономит время и ресурсы. Специфика примененияКупить арматурные каркасы для стены в грунте разумно после этапа проектирования. Предварительно ведется оценка грунта на месте реализации проекта, подбираются геометрические параметры готового изделия, включая сечения прутков и марки стали. Затем изготовитель выполняет заказ, создавая компоненты ЖБИ в соответствии со строгими требованиями государственных стандартов. К примеру, с целью минимизации рисков для рабочих и повышения качества изделия на выходе с производственной линии, контроль сварки ведется по нормам СНиПов. Длина изделия варьируется в зависимости от состояния грунта, а так же глубины, на которой будет вестись строительство. Справедливости ради нужно отметить, что купить арматурные каркасы для стены в грунте – это не единственный способ работать в условиях города. Актуальны методы опускного колодца и открытый вариант. Сам рассматриваемый принцип существует в двух формах: свайный и траншейный метод. Во втором случае реализуется единая стена на базе созданных укрепляющих конструкций и залитого бетона, который вносится непосредственно в вырытые траншеи. Технология дает возможность создать монолитные системы с максимальной прочностью и стойкостью к факторам среды. Сваи располагаются плотно друг с другом, создавая аналогичное по функции сооружение. Яркими примерами применения каркасов арматурных для стены в грунте являются тоннели под землей, как метрополитен, складские площади и гаражи, расположенные под землей, переходы, емкости технической направленности, противофильтрационные завесы и, разумеется, фундаменты. Существует еще один вариант классификации изделий по методике погружения, от которого не меняются основные аспекты производства арматурных каркасов для стены в грунте. От состояния грунта выбирают либо мокрый метод погружения, либо сухой. Вторая технология предпочтительнее, так как не требует подготовки субстрата для работы, путем нанесения глинистого раствора. Однако, использовать методику имеет смысл исключительно при высокой степени уверенности в надежности грунта. При низкой надежности, например, на основаниях, насыщенных влагой, актуален мокрый метод. Необходимо отметить, что методика актуальна далеко не во всех ситуациях. Основной комплекс исключений и запретов на применение технологии сводится к несоответствиям по качеству субстрата, на котором ведется строительство. Так каркасы арматурные для стены в грунте не имеет смысл использовать, если на месте стройки проходят подземные воды с сильными течениями, либо имеются полости и пустоты большого объема. Существуют ограничения и чисто техногенного характера, как наличие полуразрушенных кладок искусственных блоков, островов металла и остатков бетона в виде крупных компонентов. Арматурные каркасы от Завода «АРМИКОН» позволят реализовать проект архитектурного плана любой степени сложности и масштаба. Для этого снабдим всеми необходимыми типами укрепляющих каркасов, включая плоские и пространственные, в частности арматурные каркасы для стены в грунте, рассчитанные на самые суровые условия эксплуатации и высокие нагрузки. Стена в грунте: технология и порядок устройства
Но в последнее время найден ещё более практичный способ использования драгоценной земли: наряду с ростом в высоту современные здания растут и вглубь. Это позволяет размещать в многоуровневых подземных пространствах стоянки и супермаркеты, склады и развлекательные комплексы. Одной из технологией, позволяющей производить подземное строительство, является «стена в грунте». Описание технологии![]() Разработана эта технология была для возведения различных подземных построек в условиях городской тесноты. Однако она вполне подойдёт и для частной застройки. Особенно, если строительство загородного дома ведётся на дорогостоящих участках вблизи мегаполисов и владелец земли хочет по максимуму использовать свою землю. Глубина строительства может ограничиваться подпочвенными водами, но зачастую «стена в грунте» проходит водоносные слои, опускаясь до 50 и более метров.
Подобная технология может быть условно разделена на несколько разновидностей по способу сооружения защитной стены.
Траншейный сухой способПредусматривает применение готовых конструкций из железобетона либо заливку монолитного бетона. По периметру будущей постройки при помощи экскаватора или фрезы выкапывается траншея форшахты глубиной до 2 – 3 м. Форшахта служит для обозначения периметра будущей постройки, а также для укрепления стенок будущей траншеи. Как известно, у глубокой траншеи наименее устойчива её верхняя часть. Чтобы предотвратить осыпание верхнего слабого грунта, стенки форшахты укрепляют. После этого при помощи крановых или экскаваторных грейферов производят выборку почвы из траншеи на необходимую глубину вплоть до нескольких десятков метров. После того, как траншея выкопана на нужную глубину по всему периметру будущих стен, в неё заливают монолитный железобетон или монтируют в ней сборные бетонные конструкции.
Траншейный мокрый способ«Мокрая» технология основана на таком физическом понятии как «тиксотропность, под которым понимают свойство отдельных составов и материалов самостоятельно восстанавливать свою первоначальную форму. Это уникальное свойство в наибольшей степени присуще бентонитовым глинам, суспензия которых может разжижаться под действием вибрации, а после перехода в спокойное состояние – вновь увеличивать плотность, возвращаясь к исходному состоянию. Первоначальный этап «мокрого» траншейного метода ничем не отличается от «сухого». Также производится устройство форшахты для обозначения контура глубинной траншеи. Но вот далее работы идут по совершенно другому сценарию: траншея заполняется взвесью глины в водном растворе – глиняной суспензией. ![]() Она, оказывая давление на стенки траншеи, выкапываемой в слабых грунтах, не даёт им обваливаться вниз, удерживая их форму. При этом сама суспензия находится в жидком состоянии, ничуть не препятствуя землеройной технике углублять траншею. Для приготовления раствора смешиваются глина и вода в пропорции от 1 к 1 до 1 к 2. Плотность раствора зависит от показателей прочности грунта: чем более слабый грунт. Тем более плотной должна быть суспензия.
Свайный методПри свайном методе стена из монолитного или сборного железобетона заменяется сплошной стеной из буронабивных свай, заглубленных до нужного значения. В данном случае вместо копки траншеи применяется способ глубинного бурения. После устройства по периметру плотно примыкающих друг к другу скважин производится их армирование, а затем заливка бетонным раствором. Для создания плотного заграждения, непроницаемого для подземной влаги – так называемого «инфильтрационного барьера», применяется технология лидерного бурения. Она подразумевает использование в качестве свай особых труб, одна из сторон которых имеет вогнутый желоб, проходящий вдоль всей длины трубы. При монтаже одна труба своим желобом плотно прижимается к выпуклой части другой трубы. Таким образом, получается прочная и плотная стена, сквозь которую не могут пройти грунтовые воды.
Преимущества технологииСмонтировать стену в грунте можно на любом типе почвДанная технология подземного строительства является наиболее распространённой при возведении различных сооружений на глубине свыше 5 – 7 м. Популярность её обусловлена рядом несомненных плюсов:
Используемая техника
Для устройства форшахты может использоваться фреза или лёгкий экскаватор. Закачка глиняной суспензии требует наличия специализированного растворного узла для её приготовления и бетононасосной станции для подачи жидкого раствора в траншею. Глубинные траншеи копаются при помощи линейных (плоских) грейферов, навешанных на кран или экскаватор. Создание скважин для буронабивных свай производится буровыми установками вращательного или ударно-вращательного действия. Армирование траншей и скважин![]() При армировании траншей или скважин применяются армокаркасы объёмного типа из рифлёной арматуры. При их изготовлении и установке следует соблюдать ряд строительных нормативов:
Заливка бетонаВ промышленном строительстве заливка бетона ведётся с использованием бетонолитных труб, которые перемещаются при помощи строительного крана. Они представляют собой трубы диаметром от 20 до 30 см с толщиной стенки порядка 1 см, монтируемые из секций длиной 1-2 м, и подключаются к приёмному бункеру для бетона или бетононасосной станции. Заливать бетон следует, соблюдая следующие технические условия:
Монтаж сборного железобетонаВместо заливки монолитного железобетона в «стену в грунте» можно смонтировать при помощи готовых бетонных конструкций. Это позволит значительно сократить затраты сил и времени, так как в данном случае можно будет обойтись более узкой траншеей. Подробнеее о строительстве стены в грунте смотрите в этом видео: Не понадобится сооружать армированный каркас и производить трудоёмкую заливку бетонного раствора. Также не нужно будет ждать, пока монолитная заливка наберёт достаточную крепость. Сразу после монтажа подземной стены из готовых конструкций и их закрепления между собой можно приступать к выемке грунта для устройства подземных помещений. Технология стена в грунте для устройства подземных сооруженийТехнология «стена в грунте» для устройства подземных сооружений Подземные сооружения в зависимости от гидрогеологических условий и глубины заложения осуществляют разными способами, основные из которых - открытый, «стена в грунте» и способ опускного колодца. Сущность технологии «стена в грунте» заключается в том, что в грунте устраивают выемки и траншеи различной конфигурации в плане, в которых возводят ограждающие конструкции подземного сооружения из монолитного или сборного железобетона, затем под защитой этих конструкций разрабатывают внутреннее грунтовое ядро, устраивают днище и воздвигают внутренние конструкции. В отечественной практике применяют несколько разновидностей метода «стена в грунте»: - свайный, когда ограждающая конструкция образуется из сплошного ряда вертикальных буронабивных свай; - траншейный, выполняемый сплошной стеной из монолитного бетона или сборных железобетонных элементов. Технология перспективна при возведении подземных сооружений в условиях городской застройки вблизи существующих зданий, при реконструкции предприятий, в гидротехническом строительстве. С использованием технологии «стена в грунте» можно сооружать: - противофильтрационные завесы; - туннели мелкого заложения для метро; - подземные гаражи, переходы и развязки на автомобильных дорогах; - емкости для хранения жидкости и отстойники; - фундаменты жилых и промышленных зданий. В зависимости от свойств грунта и его влажности применяют два вида возведения стен - сухой и мокрый. Сухой способ, при котором не требуется глинистый раствор, применяется при возведении стен в маловлажных устойчивых грунтах. Свайные стены могут возводиться как сухим, так и мокрым способом, при этом последовательно бурят скважины и бетонируют в них сваи. Мокрым способом возводят стены подземных сооружений в водонасыщенных неустойчивых грунтах, обычно требующих закрепления стенок траншей от обрушения грунта в процессе его разработки и при укладке бетонной смеси. При этом способе в процессе работы землеройных машин устойчивости стенок выемок и траншей достигают заполнением их гл Технология производства работ методом "стена в грунте"В современных мегаполисах все чаще прослеживается тенденция к более рациональному использованию пространства и уплотнению застройки. Эти обстоятельства диктуют строительным компаниям определенные условия. На поверхности все меньше остается свободных площадок, что заставляет застройщиков прибегать к возведению подземных сооружений. Помимо прочего, существуют некоторые объекты, которые рациональнее возводить под землей. Сюда можно отнести большие склады, торгово-развлекательные комплексы, а также гаражи. Но подземное строительство является достаточно трудоемким процессом, которое предусматривает наличие определенного опыта и соответствующего оборудования у строительных компаний. Решение описанной выше задачи может быть осложнено еще и тем, что почва бывает очень неоднородна, в ней могут быть пустоты разной величины, подземные водные течения. Иногда при обследовании территории для застройки выясняется, что породы достаточно слабые. Случается, что под землей находятся всевозможные тоннели инженерных систем, которые не нанесены на карту. При этом работать достаточно часто приходится в тесноте, так как фундаменты соседних зданий располагаются довольно близко к строительной площадке, а стены высотных построек не позволяют в полной мере развернуться стрелам кранов. Решение вопроса строительства подземных сооружений![]() В зависимости от того, каковы гидрогеологические характеристики местности и насколько глубоко будут находиться помещения, подземное строительство может производиться одним из нескольких способов. Самыми распространенными считаются «стена в грунте», способ опускного колодца, а также открытый способ. Первая технология в современных реалиях довольно распространена и все еще продолжает стремительно набирать популярность, ведь с ее помощью можно решить задачу в стесненных условиях, не докучая фундаментам зданий, расположенных поблизости. Принцип технологии![]() Стена в грунте выстраивается по довольно простому принципу, который предусматривает подготовку траншеи и выемку грунта. Далее в образованных пустотах сооружаются ограждающие конструкции, для этого, как правило, используется железобетон. Под защитой полученных систем оборудуются внутренние конструкции, например пол и остальные элементы. Разновидности метода![]() Технология «стена в грунте» может быть разделена на несколько подвидов, как то: траншейный и свайный. Первый состоит в использовании монолитного бетона и железобетонных секций, с помощью которых формируется единая стена. Свайный способ предусматривает установку буронабивных опор, которые располагаются сплошным рядом. Они позволяют сформировать прочную ограждающую конструкцию. Какая бы технология ни была использована, она является более перспективной по сравнению с альтернативными методами возведения подземных сооружений. Ее целесообразно использовать и при реконструкции существующих зданий любого назначения. Область применения![]() Стена в грунте может быть использована в том случае, когда есть необходимость возвести противофильтрационные завесы, тоннели метрополитена, гаражи, склады, подземные переходы, резервуары, всевозможные отстойники, автомобильные развязки, а также фундаменты зданий разного назначения. Мокрый и сухой методы![]() Учитывая прочность грунта и уровень его влажности, строители могут выбрать мокрый или сухой метод сооружения. Последний не столь затратный, ведь для него нет необходимости подготавливать глинистый раствор. Однако к нему можно прибегать только в том случае, когда есть уверенность в прочности грунта и отсутствии подземных течений. Мокрая технология является идеальным решением для возведения крупных объектов в водонасыщенных неустойчивых грунтах. Если строительство сопровождается описанными условиями, то иногда возникает необходимость в дополнительном укреплении стен траншеи. В конечном счете получаются прочные и надежные помещения. Тиксотропность![]() Когда обустраивается стена в грунте, технология может предусматривать использование мокрого способа, при котором важно такое понятие, как тиксотропность. Это свойство присуще глинистому раствору, который имеет способность восстанавливать первоначальную форму без механических воздействий. Благодаря этому правильно подобранная суспензия будет набирать прочность на этапе строительства и разжижаться от колебательных воздействий. Это позволяет страховать стены траншеи от деформации. Максимально высокие тиксотропные качества свойственны бентонитовым глинам. Если рассматривать дополнительные характеристики таких растворов, то стоит обратить внимание на их водоотталкивающее качество. После затвердевания суспензии на поверхность стенок будет воздействовать гидростатическое давление, которое способствует образованию водонепроницаемой пленки. Ее толщина может изменяться в пределах от 1,5 до 5 миллиметров, этого достаточно для защиты сооружения от воды. Глинизация стенок позволяет экономить на водопонижении забивки шпунта. В этом состоит одно из множества преимуществ описываемой технологии. Применяемое оборудование![]() Случаи нецелесообразности методовБесспорно, описываемая технология обладает множеством плюсов, однако можно выделить ситуации, когда использование метода нецелесообразно. Строительство «стена в грунте» не производится при наличии в почве сильных подземных течений, при рыхлом грунте, а также при нахождении полуразрушенной каменной кладки на участке. Не следует использовать технологию, когда имеют место металлические острова, а также крупные обломки бетона. Когда в почве есть пустоты и полости, тоже не следует начинать работы по описываемой технологии. Противофильтрационные завесыМанипуляции по созданию противофильтрационных завес можно считать максимально простыми. Их выполняют с применением тяжелых и твердых глин, а также монолитного бетона. Назначение завес состоит в том, чтобы защитить объект от воды. Наиболее часто такие элементы используются при оборудовании плотин и рытье котлованов. В последнем случае завесы необходимы для исключения проникновения воды в полость. Перед рабочими не встанет задача понижения уровня подземных вод, что является достаточно трудоемкой процедурой. Если проводить сравнение завеса с понизительными установками, то последние действуют временно, пока ведутся работы. Конструкциям при наличии завес не будут страшны самые мощные потоки подземных вод. Параметры захваткиПрежде чем будет выстраиваться фундамент «стена в грунте», нужно рассчитать длину захватки. На этот параметр будут влиять некоторые факторы, среди них:
Технология проведения работВозведение стены в грунте начинается с бурения скважины, после подготавливаются траншеи, которые одновременно заполняются раствором. Следующим шагом станет монтаж арматурных каркасов, а также бетонолитной трубы. Заключительные манипуляции предусматривают вытеснение глинистого раствора с помощью подачи бетонной смеси посредством вертикально перемещаемой трубы. Траншеи могут разрабатываться на всю длину или по отдельным участкам. Арматурные каркасы имеют в основе стальные стержни с рифлением. Полученная система должна быть меньше на 12 сантиметров по сравнению с шириной траншеи. Элементы смачиваются в воде перед установкой, поскольку это уменьшает объем налипающей глины и увеличивает сцепление с бетоном. БетонированиеСооружение стены в грунте предполагает бетонирование, которое осуществляется методом перемещаемой трубы. Последняя имеет диаметр в пределах от 270 до 300 миллиметров, тогда как толщина стенок равна 10 миллиметрам. Учитывая объем трубы, подбирается горловина, а пыжи могут быть выполнены из мешковины. Ограничители захваткиУстройство стены в грунте может предполагать углубление траншеи на 15 метров или меньше. При этом следует использовать трубы, диаметр которых на 50 миллиметров меньше ширины траншеи. Через 5 часов после бетонирования элементы необходимо извлечь, а полученные полости заливаются смесью. Если же глубина траншеи больше упомянутого параметра, то возникнет потребность в установке ограничителя. Его задачу выполняет металлический лист, который укрепляется к арматурному каркасу. Полотно можно усилить, приварив к нему балки. Увеличение производительностиКогда метод «стена в грунте» используется в процессе строительства довольно крупного объекта, а длина захватки больше 3 метров, может возникнуть необходимость в подаче бетонной смеси огромных объемов. В этом случае она поступает по трубам, а для более быстрой и простой укладки пластичность раствора повышается пластификаторами. Состав заливается таким образом, чтобы его поверхность перекрывала всю конструкцию на 10 сантиметров. Это требуется для того, чтобы была возможность впоследствии снять загрязненный слой бетона, ведь он будет иметь большое количество глины. Уплотнение нужно будет произвести с помощью специального оборудования, которое укрепляется на бетонолитной трубе. Если ее длина больше 20 метров, то рекомендуется применить два вибратора. Те трубы, которые будут находиться на границе захваток, всегда извлекаются. Важно правильно определить время извлечения. Если сделать это слишком рано, то кромки оболочки могут оказаться повреждены. При слишком позднем извлечении труба может застрять между бетоном и грунтом. Для того чтобы исключить подобные процессы, довольно часто применяется листовое железо вместо трубы, с помощью которого можно создать неизвлекаемые прочные перемычки. Их необходимо приварить к арматурным каркасам. Для предохранения устья траншеи от деформации и осыпания нужно обустроить форшахту, которая представляет собой оголовок траншеи. О давление грунтаЕсли необходимо узнать, каково давление грунта на стену на глубине z, то можно воспользоваться следующей формулой: PR = PS + PQ, где PS – это интенсивность бокового давления на обозначенной глубине от своего веса грунта с учетом напластования слоев, действия воды, а также эффективного сцепления; PQ – это интенсивность бокового давления на упомянутой глубине от нагрузок на поверхности. Если по проекту форшахта находится на специально сформированной отсыпке выше поверхности земли, то значение принимается со знаком минус.
Стена в грунте 👉 описание метода, плюсы и минусы технологииВ промышленных городах все сильнее становится заметным дефицит свободного пространства. Крупные застройщики ищут доступные способы рационального использования каждого метра. Раньше архитекторы придумали гигантские небоскребы. Сегодня специалисты нашли более эффективный метод использования свободной земли: здания «растут» вверх, а теперь и вглубь – в грунт. Появилась возможность размещать в многоуровневых подземных пространствах супермаркеты, стоянки для транспорта, склады, развлекательные комплексы. Чтобы сооружения были добротными строители применяют универсальную технологию. ![]() Содержание статьи Краткое описание новой методики строительстваОна была разработана группой специалистов для сооружения подземных конструкций. Это касается промышленного строительства и частной застройки. Подход особенно уместен, если дом строится на дорогом участке вблизи мегаполиса и владелец недвижимости хочет максимально использовать каждый сантиметр земли. Глубина залегания стены в грунт ограничивается подпочвенными водами.
В зависимости от технологии специалисты используют свайный, траншейный, мокрый или сухой способ сооружения защитной стены. У каждого метода есть особенности и преимущества. ![]() Сухой траншейный способЭтот вариант предполагает применение готовых элементов из прочного железобетона или заливки монолитного бетона. Экскаватором либо фрезой по периметру будущей стройки выкапывают траншею форшахты глубиной от 2 до 4 метров. Она нужна для четкого обозначения периметра будущего здания, для существенного укрепления стенок траншеи. У глубокой выемки самое уязвимое место – верхняя часть. Если строительная бригада все сделает правильно – это предотвратит в будущем осыпание слабого грунта, так как стенки форшахты будут укреплены. Выборку грунта производят экскаваторами или крановыми грейферами. Глубина достигает нескольких десятков метров. Когда габариты траншеи достигнуты, в нее заливают монолитный железобетон или монтируют сборные бетонные конструкции.
![]() Применение специалистами мокрой технологииСтроительная система была основана на разжижении субстанции, когда отдельные материалы и составы самостоятельно восстанавливают первоначальную форму. Эти характеристики относятся к бентонитовым глинам. Их суспензия может постепенно разжижаться под воздействием вибрации. После перехода в спокойное состояние плотностные параметры возвращаются к исходному состоянию. Первый этап возведения прочных стен практически не отличается от сухого метода. Сооружаются форшахты для обозначения четкого контура глубины траншеи. Остальные строительные работы производятся по другой технологии. Траншею заполняют универсальной глиняной суспензией. Она оказывает давление на стены и не дает им обвалиться, удерживая заданную форму. Суспензия находится в жидком состоянии, что позволяет продолжать углублять конструкцию. Для приготовления раствора смешивают воду и глину. Плотность массы зависит от прочности грунта.
![]() Проверенная временем методикаСтена из сборного или монолитного железобетона заменяется сплошной конструкцией из буронабивных свай. Их заглубляют до нужного показателя. Вместо классической копки траншеи применяют универсальную технологию глубинного бурения. После обустройства скважин, их армируют и заливают бетонным раствором. Чтобы создать прочное заграждение, которое будет препятствовать проникновению разрушительной влаги, используют технологию лидерного бурения. Вместо классических свай монтируют особые трубы, у которых одна сторона имеет характерный вогнутый желоб, проходящий вдоль. Во время установки заготовку плотно прижимают к выпуклой части другой трубы. Это позволяет создать прочную и плотную стену, сквозь которую просто не может проникнуть грунтовая вода.
![]() Основные преимуществаВ строительстве все чаще используют технологию возведения стен на глубине более 6 м. Большая популярность этого метода связана с несколькими весомыми преимуществами:
В видеоролике интересные факты строительства подземного паркинга, тонкости укрепления стенок котлована: Помощь техникиМощность и количество агрегатов зависит от объема запланированных работ, используемой строительной технологии. Для малоэтажного дома траншеи в грунте сооружают колесным экскаватором. Для многогранной подземной конструкции под небоскребом понадобиться много специализированной техники. Небольшой экскаватор и фреза – для сооружения форшахты. Высококачественный растворный узел пригодиться для закачки глиняной суспензии. Бетононасосная станция – для подачи жидкого раствора. Большие траншеи сооружаются плоскими грейферами, которые навешивают на экскаватор или кран. Скважины – буровыми агрегатами ударно-вращательного принципа действия. ![]() Плановое армированиеУсиление скважин и трещин подразумевает монтаж каркасов объемного типа, состоящих из арматуры. Во время их производства и установки следует соблюдать ряд строительных требований:
Профессиональная заливка прочным бетономВ промышленных масштабах процедура выполняется специальными трубами. Они перемещаются по территории строительным краном. Их диаметр от 18 до 30 см, толщина стенки составляет 1 см. Монтируют трубы из отдельных секций длиной до двух метров длиной. Конструкцию подключают к вместительному бункеру для бетона или специальной станции. Чтобы результат проделанных работ был долговечным, раствор заливают согласно установленным нормам:
![]() Установка сборной железобетонной системыВместо классической заливки раствора можно смонтировать систему из готовых элементов. Это на 25% сокращает затраты, так как используется узкая траншея. Мастерам не нужно сооружать армированный каркас, осуществлять трудоемкую заливку раствора. После установки подземной стены из готовых металлических конструкций можно приступать к удалению грунта для устройства подземного этажа. ЗаключениеУниверсальная методика сооружения прочных стен в грунте позволяет устраивать просторные подземные помещения под многоэтажными домами и настоящими небоскребами. Это в несколько раз сокращает объем наземных работ, позволяет избежать обязательного понижения уровня подземных вод. Выполнять такое необычное задание может только специалист, реализовав необходимые подготовительные работы и сделав правильный чертеж будущей конструкции. Больше интересной и познавательной информации по этой теме можно узнать из видеоролика: Вконтакте Одноклассники Стена в грунте | Архитектурный журнал ADCityВ ограниченных условиях городской застройки для ограждения котлованов применяется современная технология «стена в грунте», получившая широкое распространение благодаря большому количеству преимуществ. Метод подходит там, где работы ведутся в непосредственной близости от функционирующих подземных коммуникаций, когда особо важно не допустить осадку фундаментов соседних зданий. «Стена в грунте» возводится с минимальным шумом и на достаточно большой площади стройплощадки (т.к. при этом методе используется довольно большое количество оборудования). Технология «стена в грунте» — одна из наиболее современных инновационных строительных технологий, широко применяемых при строительстве объектов или их частей, находящихся ниже уровня грунтовых вод. «Стена в грунте» успешно применяется в градостроительстве для создания подземных паркингов, подземных уровней зданий, бункеров и др. Её применение оправдано и при строительстве плотин, дамб, тоннелей и других инженерных сооружений — всюду, где требуется создание заглубленных водонепроницаемых стен. Особенности технологии В момент выемки грунта траншеи заполняются бентонитовым раствором. Раствор обладает свойством оказывать избыточное гидростатическое давление на вертикальную поверхность, что способствует укреплению стен и оберегает траншею от разрушения. Следующий этап — армирование и бетонирование траншеи, при котором бентонитовая суспензия постепенно вытесняется из траншеи (каркас опускается перед бетонированием). «Стена в грунте» может возводиться на глубине до 40, а при использовании специализированного оборудования — до 60 м, а ширина траншеи при этом может быть чрезвычайно узкой — 0,4-1 м. Стена становится ограждающей конструкцией, а также может выполнять функцию несущего элемента подземного сооружения. Метод «стена в грунте» предполагает использование оборудования двух типов. Грейферы и другое ковшовое оборудование применяются для разработки дисперсных составов — песка и глины. Гидравлические фрезы разрабатывают любой грунт — от дисперсного до полускальных аргиллита, алевролита или песчаника. Метод реализуется в следующем порядке: По периметру котлована сооружения выстраивается форшахта — железобетонное ограждение, обеспечивающее проектную точность будущей стены и предотвращающее обвал грунта с верхней части траншеи. Сфера применения метода «стена в грунте» Благодаря универсальному характеру и эффективности технология «стена в грунте» получила широкое распространение не только в жилищном строительстве — при возведении фундаментов, подземных паркингов и гаражей. Ее широко используются в строительстве подземных переходов и автомагистралей, тоннелей и станций метро. В гидротехнической сфере «стена в грунте» дает возможность возводить набережные и порты, насосные станции, находящиеся на большой глубине заложения, причальные сооружения и хранилища. Кроме того, метод хорош для реконструкции уже существующих объектов, поскольку не приводит к деформации фундаментов соседних зданий, а также незаменим в сложных гидрогеологических условиях, так как не требует предварительного водопонижения или замораживания. Строительная технология «стена в грунте» эффективна не только при строительстве объектов на больших глубинах — подземные стены одновременно служат капитальным фундаментом для надземной части сооружений. Она незаменима также в тех случаях, когда фундамент невозможно создать с применением традиционных технологий. Низкий уровень шума, отсутствие динамических колебаний, быстрота возведения сооружений позволяют применять технологию при проведении строительных работ вблизи уже построенных зданий и коммуникаций. Метод «Стена в грунте» | Статья в журнале «Молодой ученый»В статье рассмотрен метод «Стена в грунте» – один из самых прогрессивных и универсальных технологий сооружения фундамента и ограждающих конструкций в крупных городах. Ключевые слова: плотная городская застройка, метод «Стена в грунте», подземное строительство, свайный метод, траншейный метод, запрет на использование метода «Стена в грунте». Underground constructions are built in big cities where there are no free territory. Wall in the ground technology used for such purposes. It is one of the most progressive and universal technologies for construction of foundations and walling. Кey worlds: Dense urban, wall in the ground technology, underground construction, pile method, trench method, a ban on the use of the wall in the ground technology. При строительстве, где плотность городской застройки высока, целесообразно использовать метод «Стена в грунте». Он базируется на воздвижении железобетонных или бетонных водонепроницаемых конструкций. Далее в них возводятся ограждающие конструкции подземного сооружения, состоящие из сборного или монолитного железобетона. Разработка грунта траншеи осуществляется под защитой бентонитовой суспензии, что не позволяет обрушаться вертикальным стенкам траншеи. Позже производится монтаж арматурных каркасов или сборного железобетона с последующим бетонированием монолитным бетоном. Для возведения конструкций методом «Стена в грунте» одним из компонентов является глинистый раствор. Его главное требование – это обеспечение устойчивости стен траншеи и гидростатическое противодавление, превышающее давление грунта и грунтовых вод на стены траншеи, поэтому суспензия должна обладать определённой плотностью. Не меньшую роль играет вязкость глинистого раствора, которая показывает подвижность суспензии, но требования к ней противоречивы, потому что раствор должен быть маловязким для уменьшения сопротивления работы органов землеройных машин и обеспечения требуемой толщины заглинизированного слоя, а для обеспечения прочности нужна большая вязкость. Поэтому используют глинистые растворы с вязкостью 20-25 секунд. Так же важен показатель водоотдачи – способность глинистого раствора отдавать свободную воду под давлением грунту и образовывать на стенах траншеи глинистую корку. Показатель водоотдачи не должен превышать 30 миллилитров, а толщина глинистой корки – 3-4 миллиметров. Глинистый раствор должен быть стабилен, то есть не расслаиваться в состоянии покоя, если показатель стабильности превышает 0,02 г/см3, суспензия называется не стабильной или расслаивающейся. Тиксотропные свойства, то есть разжижаться от механических воздействий, раствора наиболее ярко выражены при водородном показателе равном 8-10. Важно и содержание песка в суспензии, если он превышает 4% от объёма глинистого раствора, то его требуется удалить. При приготовлении глинистых растворов с тиксотропными свойствами высокого качества используют бентонитовые высокодисперсные глины или местные глины, которые удовлетворяют требованиям: плотность – 2,7 г/см3, число пластичности ≥20, набухание ≥15%, нижний предел пластичности ≥25%, диаметр песчаных частиц – 1,0-0,05 миллиметров. Местные глины могут быть смешаны с добавками привезённых качественных глин. Применение растворов из дешёвых глин позволяет сэкономить не только на строительстве подземных сооружений, но и на транспортировке и добыче бентонитовых высокодисперсных глин. Разработка траншей при строительстве подземных сооружений методом «Стена в грунте» происходит под защитой глинистого раствора вдоль траншеи или поочередно на различных участках траншеи. Метод разработки траншеи зависит от инженерно-геологических условий строительства, размера и назначением будущей конструкции. При высоком уровне грунтовых вод или при строительстве на глубину больше 15 метров, траншеи нужно разрабатывать в два ряда через одну – две захватки. Длина захватки чаще всего равна от 2,0 до 6,0 метров и зависит от устойчивости стен траншей при их разработке и размера рабочего органа траншеекопателя. После этого нужно произвести проверку глубины траншеи, благодаря опусканию и перемещению грейфера по всей площади траншеи, она зачищается от слоя сыпавшегося грунта и осадка глинистого раствора. Разработка траншей при строительстве подземных сооружений методом «Стена в грунте» происходит под защитой глинистого раствора вдоль траншеи или поочередно на различных участках траншеи. Метод разработки траншеи зависит от инженерно-геологических условий строительства, размера и назначением будущей конструкции. При высоком уровне грунтовых вод или при строительстве на глубину больше 15 метров, траншеи нужно разрабатывать в два ряда через одну – две захватки. Длина захватки чаще всего равна от 2,0 до 6,0 метров и зависит от устойчивости стен траншей при их разработке и размера рабочего органа траншеекопателя. После этого нужно произвести проверку глубины траншеи, благодаря опусканию и перемещению грейфера по всей площади траншеи, она зачищается от слоя сыпавшегося грунта и осадка глинистого раствора. В качестве стыкового элемента по краям захваток происходит установка разделительных элементов, рекомендуется применять металлическую трубу с ребрами из уголков 75*75 миллиметров. Эти уголки должны врезаться в траншею на 30 и более миллиметров. Разделительный элемент состоит из передовой ножевой секции и рядовой секции, а также дополнительных секций, зависящих от глубины траншеи. После бетонирования ограничители захваток должны быть извлечены до сцепления с бетоном. Затем в захватку устанавливается арматурный каркас. В его составляющими являются: закладные детали из листовой стали, монтажные петли, фиксаторы монтажного слоя и трубы для пропуска грунтовых анкеров. Арматурные каркасы сваривают друг с другом при помощи электродуговой сваркой и устанавливают в захватку. На верхней части «воротника» форшахты устанавливают арматурные каркасы, а их стержни не должны доходить до дна траншеи на 25 сантиметров. После установки арматурных каркасов осуществляется бетонирование. Оно проводится методом вертикально перемещаемой трубы, притом бетонные смеси вытесняют бентонитовый раствор в разрабатываемую захватку или проводится его откачка. Бетонирование под глинистым раствором проводится непрерывно и требуется изолировать бетонную смесь от раствора, что бы они не перемешивались. Бетонирование методом вертикально перемещаемой трубы проводится с помощью бетонолитной трубы с внутренним диаметром 250-350 миллиметров. Пробка, которая устанавливается в верхнюю горловину трубы, закрепляется тросом к верху приёмного бункера. Бетонную смесь заливают в приемный бункер, она в объёме на 20% превышает объём бетонолитной трубы. Затем трубу поднимают на 3-5 сантиметров и перерезают трос, закреплённый с пробкой. Пробка под давлением бетонной смеси выталкивает глинистый раствор, находящийся в бетонолитной трубе, препятствую перемешиванию бетона. После приподнимают трубку, заполненную бетонной смесью на 20-30 сантиметров для выпуска пробки и заполняют бетонной смесью приемный бункер до устья воронки. При проведении строительства в зимний период при температуре – 15˚С бетонирование имеет ряд особенностей: утепляется оборудование для приготовления и откачки глинистого раствора, который подогревается на температуру не больше 60˚С, бетонирование вели смесью, температура которой выше 5˚С, а верхняя часть трубы утепляется шлаком и обогревается в пределах глубины примерзания грунта, пока не затвердеет бетонная смесь. Так же бывают две вариации данной технологии: траншейный – выполняется разработка траншеи с последующим устройством сплошной стены из монолитного бетона или сборных железобетонных секций; и свайный – конструкция образуется из сплошного ряда буросекущихся или бурокасательных свай. Строительную технологию «Стена в грунте» целесообразно применять для сооружения конструкций: промышленных (туннели, фундаменты зданий, бункерные ямы под вагоноопрокидыватели, промышленные подземных хранилища), транспортных (подземные гаражи, переходы и автомагистрали), гидротехнических (портовые сооружения, емкости для хранения жидкости и отстойников), жилищно-гражданских (подземные этажи и фундаменты общественных или жилых зданий). Это метод используют для строительства фундаментов и сооружений на глубине от 4 до 50 и более метров. Строения бывают несколько типов: линейные – состоят из одной стены, линейно-протяжённые- состоят из двух стен, колодезный вид- прямоугольные, круглые и многоугольные стены. В зависимости от свойств грунта и его влажности выбирают способ возведения стен в грунте: сухой или мокрый. К сухому способу разрешено прибегать, если грунт устойчив и отсутствуют грунтовые воды. Так же этот метод более экономный, потому что глинистый раствор для него не требуется. Мокрый способ возведения стен в грунте используется для сооружения подземных конструкций в неустойчивых водонасыщенных грунтах, обычно требующих закрепления стенок траншей от обрушения грунта в процессе его разработки и при укладке бетонной смеси. Прочность добивается путём заполнения их глинистым раствором с тиксотропными свойствами. Позже эту суспензию постепенно замещают монолитным бетоном или смесями глины с цементом. Использовать метод «Стена в грунте» не рекомендуется на участках с полуразрушенными каменными кладками, с крупными обломками бетона, металлическими конструкциями или железобетонными элементами, при наличии сильных грунтовых вод, а также на территории с рыхлым грунтом или грунтом с пустотами. Однако, бывают случаи, когда метод «Стена в грунте» становится единственно возможным способом возведения конструкций, потому что строительство в открытом котловане или опускным способом нецелесообразно или недопустимо: сложная конструкция и большие размеры сооружения, различная глубина заложения, большого размера сооружение закладывается на большую глубину в период длительных морозов, расширение подземных конструкций вблизи зданий, объект линейный или линейно-протяжённый. Технология «Стена в грунте» имеет множество достоинств. Этот способ позволяет не только проводить строительство подземных сооружений вблизи зданий, но и наличие дренажной прослойки обеспечивает в дальнейшем равномерное распределение нагрузки на гидроизоляцию. Так же метод экономически выгоден, обладает низким уровнем шума и скоротечностью выполнения работ, и проведения их во все сезоны годового цикла. Но он всё же имеет определённые недостатки. Самый существенный – ухудшение сцепление арматуры с бетоном, потому что частицы глинистого раствора налипают на арматуру. Хоть проводить строительство можно в зимний период, для этого приходится использовать сборный железобетон. Его применение даёт возможность гарантировать качество будущего сооружения ещё на этапе строительства, использовать пустотные, тавровые и двутавровые формы конструкции и повысить индустриальность строительства. Сборный железобетон обладает рядом недостатков: для каждой конструкции требуются определённые длина и сечение, сложность доставки изделия на стройплощадку, требуются мощные монтажные краны и сборный железобетон дороже монолитного. Таким образом, метод «Стена в грунте» не сложен в использовании. Хотя он и обладает рядом недостатков, но они легко сглаживаются. Поэтому ими можно пренебречь в пользу строительства на плотно застроенной территории города. Основные термины (генерируются автоматически): глинистый раствор, грунт, бетонная смесь, сборный железобетон, приемный бункер, монолитный бетон, конструкция, строительство, высокий уровень, будущая конструкция. Стена в грунте | Лахта Центр – многофункциональный комплекс в Приморском районе Санкт-Петербурга
Работы по устройству стены в грунте по контуру фундаментного основания высотного здания начались в конце 2012 года. Технологически "стена в грунте" – специальная конструкция, применяемая при строительстве крупных объектов с целью исключить доступ грунтовых вод в строительный котлован, а также обрушение грунта при разработке котлована для устройства фундамента. Красная линия - "стена в грунте", внутри пятиугольника - пространство, где обустраивается основание будущей башни (свайное поле и фундамент). Для строительства стены в грунте сооружается временная монолитная железобетонная направляющая стенка – форшахта. Она обеспечит проектное направление и необходимую точность стены в грунте, а также предотвратит обрушение грунта в верхней части траншеи. Высота форшахты от поверхности земли – 2,5 метра. С обеих сторон от форшахты устраивают рабочие платформы для тяжелой техники - временные насыпи из уплотненного грунта; сверху насыпи укладываются железобетонные дорожные плиты для проезда и работы строительной техники Для разработки траншеи под стену в грунте применяется двухчелюстной гидравлический грейфер. Он вынимает грунт на глубину более 30 метров. Во время разработки грунта траншея заполняется раствором бентонита, сдерживающим осыпание грунта и попадание воды. Металлические полосы-отсечки отделяют рабочие секции стены в грунте. Мини-завод по производству бентонита находится на стройплощадке. Сборка и сварка каркасов для стены в грунте осуществляется на специальных стапелях прямо на строительной площадке. Всего работало 8 стапелей, на которых создали 105 каркасов для стены в грунте. Готовый каркас каждой секции стены в грунте опускается кранами в подготовленную траншею. Специалисты контролируют процесс погружения каркаса, который занимает до получаса. Внутрь траншеи с установленным каркасом опускается бетонолитная труба с воронкой, и бетон подается со дна траншеи, вытесняя более легкий бентонит, который откачивается насосом и подается на установку для регенерации. Для бетонирования всей стены в грунте необходимо 11 тыс. кубометров бетона – это порядка 2200 автомобильных миксеров. После окончания работ по сооружению стены в грунте происходит демонтаж форшахты и рабочей платформы. На верхнюю часть"стены в грунте" устанавливается обвязочная балка - железобетонная конструкция надежно связывающую сегменты стены в грунте в единый монолит.
Площадка внутри стены в грунте выравнивается для дальнейшей работы на данном участке буровых установок по устройству свайного поля. Работы по созданию "стены в грунте" были закончены летом 2013 года. |