История одного строительства.
ТВиттер
   
 
фундамент дома фундамент дома наш дом скважина на воду наш дом стропила крыши септик фундамент дома сруб

 
Затраты на строительство:
- за 2014 год
- за 2013 год
- за 2012 год
- за 2011 год
- за 2010 год
- за 2009 год
- за 2006 год

 

Целью теплотехнического расчета наружной стены является определение


Теплотехнический расчет ограждающих конструкций зданий :: SYL.ru

Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.

Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.

В чем смысл расчета?

  1. Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
  2. Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
  3. При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.

Теплотехнические требования

Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:

  • Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой – излишних потерь тепла.
  • Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
  • В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
  • Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
  • Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.

Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.

Теплотехнические качества

От теплотехнических характеристик наружных конструктивных элементов строений зависит:

  • Влажностный режим элементов конструкции.
  • Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
  • Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
  • Количество тепла, которое теряется зданием в зимний период времени.

Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций – их толщины и последовательности слоев.

Задачи теплотехнического расчета

Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:

  1. Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
  2. Обеспечения во внутренних помещениях комфортного микроклимата.
  3. Обеспечения оптимальной тепловой защиты ограждений.

Основные параметры для расчета

Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:

  • Назначение и тип здания.
  • Географическое расположение строения.
  • Ориентация стен по сторонам света.
  • Размеры конструкций (объем, площадь, этажность).
  • Тип и размеры окон и дверей.
  • Характеристики отопительной системы.
  • Количество людей, находящихся в здании одновременно.
  • Материал стен, пола и перекрытия последнего этажа.
  • Наличие системы горячего водоснабжения.
  • Тип вентиляционных систем.
  • Другие конструктивные особенности строения.

Теплотехнический расчет: программа

На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.

Данные программы позволяют вычислить следующее:

  • Термическое сопротивление.
  • Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
  • Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
  • Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
  • Подбор панельных стальных радиаторов.

Теплотехнический расчет: пример расчета для наружных стен

Для расчета необходимо определить следующие основные параметры:

  • tв = 20°C – это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.
  • По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
  • В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений – A.
  • tн = -34 °C – это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
  • Zот.пер = 220 суток – это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
  • Tот.пер. = -5,9 °C – это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.

Исходные данные

В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).

Комфортные условия

Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:

R0тр = (n × (tв – tн)) : (Δtн × αв), где

n = 1 – это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.

Δtн = 4,5 °C – это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.

αв = 8,7 Вт/м2 °C – это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.

Подставляем данные в формулу и получаем:

R0тр = (1 × (20 – (-34)) : (4,5× 8,7) = 1,379 м2 °C/Вт.

Условия энергосбережения

Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:

ГСОП = (tв – tот.пер.) × Zот.пер, где

tв – это температура воздушного потока внутри здания, °C.

Zот.пер. иtот.пер. – это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.

Таким образом:

ГСОП = (20 – (-5,9)) ×220 = 5698.

Исходя из условий энергосбережения, определяем R0тр методом интерполяции по СНиПу из таблицы 4:

R0тр = 2,4 + (3,0 – 2,4)×(5698 – 4000)) / (6000 – 4000)) = 2,909 (м2°C/Вт)

Далее, выполняя теплотехнический расчет наружной стены, следует вычислить сопротивление теплопередаче R0:

R0 = 1/ αв + R1 + 1/ αн, где

R1= d/l.

d – это толщина теплоизоляции, м.

l = 0,042 Вт/м°C – это теплопроводность минераловатной плиты.

αн = 23 Вт/м2°C – это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.

R0 = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.

Толщина утеплителя

Толщина теплоизоляционного материала определяется исходя из того, что R0 = R0тр, при этом R0тр берется при условиях энергосбережения, таким образом:

2,909 = 0,158 + d/0,042, откуда d = 0,116 м.

Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.

Необходимость выполнения расчета

Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.

Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.

Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.

www.syl.ru

Теплотехнический расчёт наружной кирпичной стены — КиберПедия

Цель работы:определить толщину ограждающей конструкции кирпичной стены на основании требований строительной теплотехники.

Знать:теплоизоляционные функции наружных ограждающих конструкций и теплотехнические требования к ним.

Уметь:определять понятие «ограждающая конструкция», причины, требующие теплотехнического расчёта ограждающей конструкции.

 

Краткие теоретические сведения

К ограждающим элементам здания в теплотехническом отношении предъявляются следующие требования:

· оказывать сопротивление прохождению через них тепла;

· не иметь на внутренней поверхности температуры, значительно отличающейся от температуры воздуха помещения, с тем, чтобы вблизи ограждения не ощущалось холода, а на поверхности не образовывался конденсат;

· обладать достаточной тепловой инерцией (теплоустойчивостью), чтобы колебания наружной и внутренней температур меньше отражались на колебаниях температуры внутренней поверхности;

· сохранять нормальный влажностный режим, т.к. увлажнение ограждения снижает его теплозащитные свойства.

Для выполнения перечисленных требований при проектировании ограждений производят их теплотехнический расчёт на основании данных СНиП ΙΙ-3-79* “Строительная теплотехника” и СНиП ΙΙ-23-01-99 “Строительная климатология»

Порядок выполнения теплотехнического расчёта рассмотрим на примере.

 

Порядок выполнения работы

1. Из СНиПов выписываем следующие данные для расчёта:

Район строительства – г. Новочеркасск;

Зона влажности – сухая;

Назначение здания – жилой дом;

Влажностный режим помещения – нормальный;

Условия эксплуатации – А;

Расчётная зимняя температура, равная температуре наиболее холодной пятидневки = - 22ºС;

Средняя температура отопительного периода-1,1ºС;

Относительная влажность воздуха: 60%;

Коэффициент теплоотдачи для внутренних стен =8,7 Вт/м²×ºС;

Коэффициент теплоотдачи для наружных стен в зимних условиях =8,7 Вт/м²×ºС;

Коэффициент, зависящий от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху П=1;

Нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающих конструкций =4 ºС;

2. Согласно заданию стена состоит из керамического пустотелого кирпича плотностью ρ=1400 кг/м³ (брутто) на цементно-песчаном растворе с оштукатуриванием внутренней поверхности известково-песчаным раствором толщиной =0,02 м.



Рис. 1. Схема наружной стены

 

Определяем требуемое сопротивление теплопередаче

3. Определяем минимальную толщину стены , исходя из санитарно-гигиенических и комфортных условий, приравнивая фактическое сопротивление теплопередаче всех слоев стены требуемому сопротивлению.

Отсюда м,

где и - коэффициент теплопроводности соответственно кирпичной кладки стены и штукатурки. Таким образом, из санитарно-гигиенических и комфортных условий толщину стены принимаем 0,64 м (в 2,5 кирпича).

4. Для определения толщины стены из условий энергосбережения подсчитываем градусосутки отопительного периода (ГСОП).

ГСОП=

где Z – продолжительность суток со среднесуточной температурой воздуха меньше или равной +8ºС - 175 сут. (СНиП 23-01-99 «Строительная климатология»)

ГСОП= ºС×сут.

Определяем методом интерполяции из СНиП ΙΙ-3-79* «Строительная теплотехника».

ГСОП
2,1 2,8

Сопротивление теплопередаче для ГСОП

2,8-2,1=0,7

4000-2000=2000

0,7:2000=0,00035

ГСОП=3342,5-2000=1342,5

0,00035×1342,5=0,47

=2,1+0,47=2,57

5. Определяем толщину стены по энергосбережению

м

Таким образом, толщина стены по энергосбережению должна быть в 2,4 раза больше рассчитанной из санитарно-гигиенических и комфортных условий, что повлечет за собой увеличение нагрузки на фундаменты в несколько раз.

6. С целью уменьшения толщины стены принимаем взамен сплошной кладки трехслойный вариант с утеплителем (колодцевая кладка). Кладка наружного слоя ведется под расшивку.

 

Кирпичная кладка из обыкновенного кирпича на цементно-песчаном растворе ρ=1800 кг/м³ λ=0,70 Вт/м²×ºС Утеплитель газобетон ρ=400 кг/м³ λ=0,15 Вт/м²×ºС Кирпичная кладка из обыкновенного кирпича на цементно-песчаном растворе ρ=1800 кг/м³ λ=0,70 Вт/м²×ºС Известково-песчаный раствор δ=20мм ρ=1700 кг/м³ λ=0,70 Вт/м²×ºС.



Рис.2. Схема наружной стены неоднородной кладки с утеплителем.

 

Определяем толщину :

где и =0,81 Вт/м²×ºС - коэффициенты теплопроводности кирпичной кладки;

=0,81 Вт/м²×ºС – коэффициент теплопроводности известково-песчаного раствора.

7. Общая толщина стены без штукатурки составит:

=0,12+0,31+0,12=0,55 м

8. Полученная толщина стены не кратна стандартной 0,64 м (2,5 кирпича), поэтому принимаем =0,64 м и уточняем требуемую толщину утеплителя:

=0,64-(0,12+0,12)=0,4 м

Окончательно принимаем толщину наружной стены 640 мм (2,5 кирпича).

Контрольные вопросы

1. Назовите теплотехнические требования, предъявляемые к наружным ограждающим конструкциям отапливаемых зданий.

2. Назовите мероприятия по предотвращению конденсации влаги внутренних ограждений.

 

 

ПРАКТИЧЕСКАЯ РАБОТА 11

cyberpedia.su

Теплотехнический расчет конструкции здания

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

Методы расчета тепловой нагрузки системы отопления

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

Q=S*100 Вт (150 Вт),
 
 Q — требуемое количество тепла, необходимое для обогрева всего помещения, Вт
 
 S — отапливаемая площадь помещения, м?
 
 Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

Q=V*41 Вт (34 Вт),
 
 где V – наружный объем помещения в м?,
 
 А 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания стандартной постройки (в панельном доме). Если строительство ведется с применением современных строительных материалов, то удельный показатель теплопотерь принято включать в расчеты со значением 34 Ватт.

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Инфильтрация воздуха или вентиляция зданий

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Расчет вентиляционной тепловой нагрузки производится по формуле:

Qвент= c*p*L*(t1-t2)
 
 где, Q – количество тепла, необходимое для нагрева приточного воздуха, Вт;
 
 с – теплоемкость воздуха, Дж/кг*град
 
 p - плотность воздуха, кг/м3
 
 L – расход приточного воздуха, м3/час
 
 t1 и t2 – начальная и конечная температуры воздуха, град.

Если в жилых помещениях отсутствует организованный воздухообмен, то при расчете теплопотерь здания производится учет тепла, затрачиваемого системой отопления на нагрев инфильтрационного воздуха. При этом обогрев воздуха, поступающего в помещения осуществляется радиаторами систем отопления, то есть учитывается в их тепловой нагрузке.

Если в помещениях установлены герметичные стеклопакеты без встроенных воздушных клапанов, то потери тепла на нагрев воздуха, тем не менее учитываются. Это обусловлено тем, что в случае кратковременного проветривания, поступивший холодный воздух все равно требуется нагревать.

Для более комфортной вентиляции встраивается приточный стеновой клапан.

 

Учет количества инфильтрационной тепловой энергии производится по нескольким методикам, а в тепловом балансе здания в расчет принимается наибольшее из значений.

Например, количество тепла на нагрев воздуха, проникающего в помещения для компенсации естественной вытяжки, определяется по формуле:

Qинф=0,28*L*p*c*(tнар-tпом),
 
 где, с – теплоемкость воздуха, Дж/кг*град
 
 p - плотность воздуха, кг/м?
 
 tнар – температура наружного воздуха, град,
 
 tпом – расчетная температура помещения, град,
 
 L – количество инфильтрационного воздуха, м?/час.

Количество воздуха, поступающего в зимний период в жилые помещения, как правило, обусловлено работой естественных вытяжных систем, поэтому в одном случае принимается равным объему вытягиваемого воздуха.

Количество вытяжки в жилых помещениях определяется согласно СНиП 41-01-2003 по нормативным показателям удаления воздуха от плит и санитарных приборов.

  • От кухонной плиты – электрической 60 м?/час или газовой 90 м?/час;
  • Из ванны и санузлов по 25 м?/час

Во втором случае данный показатель инфильтрации определяется исходя из санитарной нормы свежего наружного воздуха, который должен поступать в помещение для обеспечения оптимального и качественного состава воздушной среды в жилых помещениях. Этот показатель определяется по удельной характеристике: 3 м?/час на 1м? жилой площади.

За расчетное значение принимается наибольший расход воздуха и соответственно большее количество теплопотерь на инфильтрацию.

Пример: Так как здание, рассматриваемое в примере, построено по каркасному типу с установкой окон в деревянных переплетах, то при создании вытяжной вентиляции на кухне и в санузлах объем инфильтрации будет достаточно высок. Дома такого типа, как правило, являются наиболее «дышащими».

Инфильтрационная составляющая определяется согласно выше приведенным методикам. Расчет производится для всего жилого дома при условии, что на кухне установлена электроплита, на первом этаже находится санузел и ванная.

То есть объем вытяжного воздуха по первой методике составляет Lвыт=60+25+25=110 м?/ч,

а по второй методике санитарная норма приточного воздуха Lприт=3м?/ч*62м?(жилая площадь)=186 м3/час.

К расчету принимаем максимальное количество воздуха.

Qинф=0,28*186*1,2*1,005*(22+28)=3 140 Вт, что составляет 44Вт/м?.

santech-info.ru

Теплотехнический расчёт здания - считаем теплопотери по площади и по объему

Здесь вы узнаете:

Теплорасчет позволяет установить оптимальную (две границы – минимальная и максимальная) толщину стен ограждающих и несущих конструкций, которые обеспечат длительную эксплуатацию без промерзаний и перегревов перекрытий и перегородок. Иначе говоря, эта процедура позволяет вычислить реальную или предполагаемую, если она проводится на этапе проектирования, тепловую нагрузку здания, которая будет считаться нормой.

В основу анализа входят следующие данные:

  • конструкция помещения – наличие перегородок, теплоотражающих элементов, высота потолков и пр.;
  • особенности климатического режима в данной местности – максимальные и минимальные границы температур, разница и стремительность температурных перепадов;
  • расположенность строения по сторонам света, то есть учет поглощения солнечного тепла, на какое время суток приходится максимальная восприимчивость тепла от солнца;
  • механические воздействия и физические свойства строительного объекта;
  • показатели влажности воздуха, наличие или отсутствие защиты стен от проникновения влаги, присутствие герметиков, в том числе герметизирующих пропиток;
  • работа естественной или искусственной вентиляции, присутствие «парникового эффекта», паропроницаемость и многое другое.

 

При этом оценка этих показателей должна соответствовать ряду норм – уровню сопротивления теплопередаче, воздухопроницаемости и пр. Рассмотрим их подробнее.

Для чего делают теплотехнический расчёт здания

Ряд целей актуален только для жилых домов или, напротив, промышленных помещений, но большинство решаемых проблем подходит для всех построек:

  • Сохранение комфортных климатических условий внутри комнат. В термин «комфорт» входит как отопительная система, так и естественные условия нагревания поверхности стен, крыши, использование всех источников тепла. Это же понятие включают и систему кондиционирования. Без должной вентиляции, особенно на производстве, помещения будут непригодны для работы.
  • Экономия электроэнергии и других ресурсов на отопление. Здесь имеют место следующие значения:
    • удельная теплоемкость используемых материалов и обшивки;
    • климат снаружи здания;
    • мощность отопления.

Крайне неэкономично проводить отопительную систему, которая просто не будет использоваться в должной степени, но зато будет трудна в установлении и дорога в обслуживании. То же правило можно отнести к дорогостоящим стройматериалам.

Требования и сопутствующая документация

Государственные проверяющие органы, руководящие организацией и регламентацией строительства, а также проверкой выполнения техники безопасности, составили СНиП № 23-02-2003, в котором подробно излагаются нормы проведения мероприятий по тепловой защите зданий.

Документ предлагает инженерные решения, которые обеспечат наиболее экономичный расход теплоэнергии, которая уходит на отопление помещений (жилых или промышленных, муниципальных) в отопительный период. Эти рекомендации и требования были разработаны с учетом вентиляции, конверсии воздуха, а также со вниманием к месторасположению точек поступления тепла.

СНиП – это законопроект на федеральном уровне. Региональная документация представлена в виде ТСН – территориально-строительных норм.

Не все постройки входят в юрисдикцию этих сводов. В частности, не проверяются по этим требованиям те строения, которые отапливаются нерегулярно или вовсе сконструированы без отопления. Обязательным теплорасчет является для следующих зданий:

  • жилые – частные и многоквартирные дома;
  • общественные, муниципальные – офисы, школы, больницы, детские сады и пр.;
  • производственные – заводы, концерны, элеваторы;
  • сельскохозяйственные – любые отапливаемые постройки с/х назначения;
  • складские – амбары, склады.

В тексте документа прописаны нормы для всех тех составляющих, которые входят в теплотехнический анализ.

Требования к конструкциям:

  • Теплоизоляция. Это не только сохранение тепла в холодное время года и недопущение переохлаждений, промерзаний, но и защита от перегрева летом. Изоляция, таким образом, должна быть обоюдосторонней – предупреждение влияний извне и отдачи энергии изнутри.
  • Допустимое значение перепада температур между атмосферой внутри здания и терморежимом внутренней части ограждающих конструкций. Это приведет к скоплению конденсата на стенах, а также к негативному влиянию на здоровье людей, находящихся в помещении.
  • Теплоустойчивость, то есть температурная стабильность, недопущение резких перемен в нагреваемом воздухе.
  • Воздухопроницаемость. Здесь важен баланс. С одной стороны, нельзя допустить остывания постройки из-за активной отдачи тепла, с другой стороны, важно предупредить появление «парникового эффекта». Он бывает, когда использован синтетический, «недышащий» утеплитель.
  • Отсутствие сырости. Повышенная влажность – это не только причина для появления плесени, но и показатель, из-за которого происходят серьезные потери теплоэнергии.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

Q=S*100 Вт (150 Вт),Q — требуемое количество тепла, необходимое для обогрева всего помещения, ВтS — отапливаемая площадь помещения, м?Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.


Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать устройство вентиляции с рекуператором. Рассмотрим несколько примеров для домов из разных материалов.

Теплорасчет ограждающих конструкций по объему здания

Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.

Формула:

Q=V*41 Вт (34 Вт)

  • V – наружный объем строения в м куб;
  • 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.

Для общей формулы мы советуем дополнительно использовать коэффициенты – это число, на которое нужно умножить результат:

  • Стекла в окнах:
    • двойной пакет – 1;
    • переплет – 1,25.
  • Материалы утеплителя:
    • новые современные разработки – 0,85;
    • стандартная кирпичная кладка в два слоя – 1;
    • малая толщина стен – 1,30.
  • Температура воздуха зимой:
    • -10 – 0,7;
    • -15 – 0,9;
    • -20 – 1,1;
    • -25 – 1,3.
  • Процент окон в сравнении с общей поверхностью:
    • 10% – 0,8;
    • 20% – 0,9;
    • 30% – 1;
    • 40% – 1,1;
    • 50% – 1,2.

Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м.2

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м2
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м2
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м2

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае - это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Пример теплотехнического расчета

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.


Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.


Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Программное обеспечение при проектировании отопительной системы

С помощью компьютерных программ от компании «ЗВСОФТ» можно рассчитать все материалы, затраченные на отопление, а также сделать подробный поэтажный план коммуникаций с отображением радиаторов, удельной теплоемкости, энергозатрат, узлов.

Фирма предлагает базовый САПР для проектных работ любой сложности – ZWCAD 2018 Professional. В нем можно не только сконструировать отопительную систему, но и создать подробную схему для строительства всего дома. Это можно реализовать благодаря большому функционалу, числу инструментов, а также работе в двух– и трехмерном пространстве.

К базовому софту можно установить надстройку ИНЖКАД. Эта программа разработана для проектирования всех инженерных систем, в том числе для отопления. С помощью легкой трассировки линий и функции наслоения планов можно спроектировать на одном чертеже несколько коммуникаций – водоснабжение, электричество и пр.

Перед постройкой дома сделайте теплотехнический расчет. Это поможет вам не ошибиться с выбором оборудования и покупкой стройматериалов и утеплителей.

remont-system.ru

Как сделать теплотехнический расчет наружной стены, пример

Чтобы в жилище было тепло в самые сильные морозы, необходимо правильно подобрать систему теплоизоляции – для этого выполняют теплотехнический расчет наружной стены.Результат вычислений показывает, насколько эффективен реальный или проектируемый способ утепления.

Как сделать теплотехнический расчет наружной стены

Вначале следует подготовить исходные данные. На расчетный параметр влияют следующие факторы:

  • климатический регион, в котором находится дом;
  • назначение помещения – жилой дом, производственное здание, больница;
  • режим эксплуатации здания – сезонный или круглогодичный;
  • наличие в конструкции дверных и оконных проемов;
  • влажность внутри помещения, разница внутренней и наружной температуры;
  • число этажей, особенности перекрытия.

После сбора и записи исходной информации определяют коэффициенты теплопроводности строительных материалов, из которых изготовлена стена. Степень усвоения тепла и теплоотдачи зависит от того, насколько сырым является климат. В связи с этим для вычисления коэффициентов используют карты влажности, составленные для Российской Федерации. После этого все числовые величины, необходимые для расчета, вводятся в соответствующие формулы.

Теплотехнический расчет наружной стены, пример для пенобетонной стены

В качестве примера рассчитываются теплозащитные свойства стены, выложенной из пеноблоков, утепленной пенополистиролом с плотностью 24 кг/м3 и оштукатуренной с двух сторон известково-песчаным раствором. Вычисления и подбор табличных данных ведутся на основании строительных правил. Исходные данные: район строительства – Москва; относительная влажность – 55%, средняя температура в доме tв = 20О С. Задается толщина каждого слоя: δ1, δ4=0,01м (штукатурка), δ2=0,2м (пенобетон), δ3=0,065м (пенополистирол «СП Радослав»).
Целью теплотехнического расчета наружной стены является определение необходимого (Rтр) и фактического (Rф) сопротивления теплопередаче.
Расчет

  1. Согласно таблице 1 СП 53.13330.2012 при заданных условиях режим влажности принимается нормальным. Требуемое значениеRтр находят по формуле:
    Rтр=a•ГСОП+b,
    где a,b принимаются по таблице 3 СП 50.13330.2012. Для жилого здания и наружной стены a = 0,00035; b = 1,4.
    ГСОП – градусо-сутки отопительного периода, их находят по формуле(5.2) СП 50.13330.2012:
    ГСОП=(tв-tот)zот,
    где tв=20О С; tот – средняя температура наружного воздуха во время отопительного периода, по таблице 1 СП131.13330.2012tот = -2,2ОС; zот = 205 сут. (продолжительность отопительного сезона согласно той же таблице).
    Подставив табличные значения, находят: ГСОП = 4551О С*сут.; Rтр = 2,99 м2*С/Вт
  2. По таблице 2 СП50.13330.2012 для нормальной влажности выбирают коэффициенты теплопроводности каждого слоя «пирога»:λБ1=0,81Вт/(м°С), λБ2=0,26Вт/(м°С), λБ3=0,041Вт/(м°С), λБ4=0,81Вт/(м°С).
    По формуле E.6 СП 50.13330.2012 определяют условное сопротивление теплопередаче:
    R0усл=1/αint+δn/λn+1/αext.
    гдеαext = 23 Вт/(м2°С) из п.1 таблицы 6 СП 50.13330.2012 для наружных стен.
    Подставляя числа, получаютR0усл=2,54м2°С/Вт. Уточняют его с помощью коэффициента r=0.9, зависящего от однородности конструкций, наличия ребер, арматуры, мостиков холода:
    Rф=2,54•0,9=2,29м2•°С/Вт.

Полученный результат показывает, что фактическое теплосопротивление меньше требуемого, поэтому нужно пересмотреть конструкцию стены.

Теплотехнический расчет наружной стены, программа упрощает вычисления

Несложные компьютерные сервисы ускоряют вычислительные процессы и поиск нужных коэффициентов. Стоит ознакомиться с наиболее популярными программами.

  1. «ТеРеМок». Вводятся исходные данные: тип здания (жилой), внутренняя температура 20О , режим влажности – нормальный, район проживания – Москва. В следующем окне открывается рассчитанное значение нормативного сопротивления теплопередаче – 3,13 м2*оС/Вт.
    На основании вычисленного коэффициента происходит теплотехнический расчет наружной стены из пеноблоков (600 кг/м3), утепленной экструдированным пенополистиролом «Флурмат 200» (25 кг/м3) и оштукатуренной цементно-известковым раствором. Из меню выбирают нужные материалы, проставляя их толщину (пеноблок – 200 мм, штукатурка – 20 мм), оставив незаполненной ячейку с толщиной утеплителя.
    Нажав кнопку «Расчет», получают искомую толщину слоя теплоизолятора – 63 мм. Удобство программы не избавляет ее от недостатка: в ней не принимается во внимание разная теплопроводность кладочного материала и раствора. Спасибо автору можно сказать по этому адресу http://dmitriy.chiginskiy.ru/teremok/
  2. Вторая программа предлагается сайтом http://rascheta.net/. Ее отличие от предыдущего сервиса в том, что все толщины задаются самостоятельно. В расчет вводится коэффициент теплотехнической однородности r. Его выбирают из таблицы: для пенобетонных блоков с проволочной арматурой в горизонтальных швах r = 0,9.
    После заполнения полей программа выдает отчет о том, каково фактическое тепловое сопротивление выбранной конструкции, отвечает ли она климатическим условиям. Кроме того, предоставляется последовательность вычислений с формулами, нормативными источниками и промежуточными значениями.

При возведении дома или проведении теплоизоляционных работ важна оценка результативности утепления наружной стены: теплотехнический расчет, выполненный самостоятельно или с помощью специалиста позволяет сделать это быстро и точно.

wallsgrow.ru

Теплотехнический расчет наружной стены

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Сыктывкарский лесной институт – филиал государственного

образовательного учреждения высшего профессионального

образования «Санкт-Петербургская государственная

лесотехническая академия имени С. М. Кирова»

(СЛИ)

Кафедра «Дорожного, промышленного и гражданского строительства»

Расчетно-графическая работа

по дисциплине: Теплогазоснабжение с ОТТ

Выполнила:

Проверил:

Сыктывкар 2015

Теплотехнический расчет наружной стены.

Исходные данные:

Место строительства – г. Брянск.

Зона влажности  - нормальная.

Влажностный режим помещения – нормальный.

Температура воздуха наиболее холодной пятидневки, обеспеченностью 0,92 tн5 = -26 C.

Расчетная температура внутреннего воздуха  tв= 20 C.

Относительная влажность в= 55% .

Условия эксплуатации наружного ограждения – Б.

Температура отопительного периода (со среднесуточной температурой t≤ 8˚C) tо.п = -2,3 С. Продолжительность отопительного периода о.п = 205.

Конструкция наружной  стены:

Наружные стены 5-ислойные. 1 – бетонная плита, теплопроводность 1, = 1,51 Вт/°С, толщина внутреннего и наружного слоя 200 мм. 2 – утепляющий слой, теплопроводность 2 = 0,041 Вт/°С. 3 – бетонная плита, теплопроводность 3 = 1,69 Вт/°С, толщина слоя 600 мм.

Значение коэффициента n для наружных стен n = 1 (таб. 6 СНиП 23-02-2003).

Коэффициент теплоотдачи внутренней поверхности стены в = 8,7 Вт/(м2.С) (таб. 7 СНиП 23-02-2003).

Коэффициент теплоотдачи наружной поверхности стены н = 23 Вт/(м2.С).

Нормируемый температурный перепад между температурой внутреннего воздуха tв и температурой внутренней поверхности ограждающей конструкции, для жилых помещений tн = 4 (таб.5 СНиП 23-02-2003).

Решение:

1. Сопротивление теплопередаче R0 должно быть не менее требуемого сопротивления теплопередаче по санитарно-гигиеническим условиям R0тр.

Требуемые минимальные значения сопротивления теплопередаче из условий энергосбережения  определяются из таблицы 4 СНиП 23-02-2003 по величине градусо-суток отопительного периода (ГСОП).

ГСОП = (tв-t о.п)Zо.п = (20-(-2,3)) .205 = 4571,5 С . сут

Требуемое сопротивление теплопередаче определяем интерполяцией по таблице 4 СНиП 23-02-2003.

Значения Rтр для величин Dd, отличающихся от табличных, следует определять по формуле: Rтр = aDd + b,

где Dd — градусо-сутки отопительного периода, °С·сут, для конкретного пункта;

a, b — коэффициенты, значения которых следует принимать по данным таблицы для соответствующих групп зданий (для стен a = 0,00035, b = 1,4)

Выбираем максимальное .

2. Определяем необходимую толщину утепляющего слоя из условия R0> R0тр

Определим необходимую толщину утепляющего слоя:

По конструктивным требованиям принимаем минимальную толщину утепляющего слоя ут = 0,1 м (100мм). Общее сопротивление теплопередаче ограждающей конструкции:

Условие R0 = 3,012 м2·С/Вт    R0тр = 3,0м2·С/Вт   выполнено, следовательно конструкция соответствует требованиям а) п.5.1 СНиП 23-02-2003.

3. Проверка выполнения санитарно-гигиенических требований тепловой защиты здания.

Определяем температуру внутренней поверхности стены по формуле:

Разница температур внутреннего воздуха и внутренней поверхности стены:

 Перепад температур меньше нормируемого.

                 

Теплотехнический расчет перекрытия над подвалом.

                                     

Исходные данные:

Температура воздуха наиболее холодной пятидневки, обеспеченностью 0,92 tн5 = -26 C.

Расчетная температура внутреннего воздуха  tв= 20 C.  

Температура отопительного периода (со среднесуточной температурой t≤ 8˚C) tо.п = -2,3 С

Продолжительность отопительного периода (сут.) о.п = 205.

Значение коэффициента n для подвальных перекрытий n = 0,6 (таб. 6 СНиП 23-02-2003).

Коэффициент теплоотдачи внутренней поверхности перекрытия в = 8,7 Вт/(м2.С) (таб. 7 СНиП 23-02-2003).

Коэффициент теплоотдачи наружной поверхности перекрытия н = 17 Вт/(м2.С).

Нормируемый температурный перепад между температурой внутреннего воздуха tв и температурой внутренней поверхности ограждающей конструкции, для жилых помещений tн = 2 (таб.5 СНиП 23-02-2003).

                                       

Состав конструкции подвального перекрытия:

1 – линолеум, теплопроводность 1= 0,35 Вт/°С, толщина слоя 3 мм. 2 – стяжка, теплопроводность 2= 0,58 Вт/°С, толщина слоя 20 мм. 3 – пароизоляционный слой, теплопроводность 3= 0,185 Вт/°С, толщина слоя 3 мм. 4 – теплоизоляционный слой, теплопроводность 4= 0,041 Вт/°С. 5 – плита перекрытия, теплопроводность 5= 1,69 Вт/°С, толщина слоя 220 мм.

1. Находим термическое сопротивление многопустотной ж/б панели.

Для упрощения круглые отверстия - пустоты панели диаметром 150 мм заменяем равновеликими по площади квадратными со стороной 130 мм.

Термическое сопротивление в направлении, параллельном движению теплового потока, вычисляем в двух характерных сечениях I-I и II-II.

Сечение I-I:

два слоя бетона δ = 30 мм, = 1,69 Вт/м°с и воздушная прослойка δ = 130 мм.

Термическое сопротивление воздушной прослойки Rв.п. = 0,21 (табл. 1.6 [5])  

Сечение II-II:

глухая часть панели  - слой бетона δ = 150 мм  = 1,69 Вт/м°с.  

Термическое сопротивление неоднородной ограждающей конструкции в параллельной плоскости:

Термическое сопротивление в направлении, перпендикулярном движению теплового потока, вычисляем в трех характерных слоях 1,2,3.

Для слоев 1 и 3 бетон δ = 30мм  = 1,69 Вт/м°с

Для слоя 2 найдем средний коэффициент теплопроводности, т.к. констркция этого слоя состоит из воздушной прослойки δ = 90мм и ж/б толщиной δ = 30мм.

Суммарное термическое сопротивление всех трех слоев панели:

Можно принять полученные сопротивления, и полное термическое сопротивление ж/б панели:

2.Найдем требуемое сопротивление теплопередаче по санитарно-гигиеническим условиям R0тр.

3. Определяем необходимую толщину утепляющего слоя.

Теплотехнический расчет ведется из условия равенства общего термического сопротивления Rо требуемому, т.е  Rо= 1,69 .

Термическое сопротивление ограждающей конструкции может быть представлено как сумма термических сопротивлений отдельных слоев, т.е.

Принимаем толщину утепляющего слоя пенополиуретана равной 50 мм.

Общее сопротивление теплопередаче ограждающей конструкции:

Условие R0 = 2,3 м2·С/Вт    R0тр = 1,69 м2·С/Вт   выполнено, следовательно конструкция соответствует требованиям а) п.5.1 СНиП 23-02-2003.

4. Проверка выполнения санитарно-гигиенических требований тепловой защиты здания.

Определяем температуру внутренней поверхности стены по формуле:

Разница температур внутреннего воздуха и внутренней поверхности стены:

 Перепад температур меньше нормируемого (таб.5 СНиП 23-02-2003) Конструкция соответствует требованиям б) п.5.1 СНиП 23-02-2003

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ БЕСЧЕРДАЧНОГО ПЕРЕКРЫТИЯ.

                                     

Исходные данные:

Температура воздуха наиболее холодной пятидневки, обеспеченностью 0,92 tн5 = -26 C.

Расчетная температура внутреннего воздуха  tв= 20 C.  

Температура отопительного периода (со среднесуточной температурой t≤ 8˚C) tо.п = -2,3С

Продолжительность отопительного периода (сут.)о.п = 205.

Значение коэффициента n для подвальных перекрытий n = 1 (таб. 6 СНиП 23-02-2003).

Коэффициент теплоотдачи внутренней поверхности потолка в = 8,7 Вт/(м2.С) (таб. 7 СНиП 23-02-2003).

Коэффициент теплоотдачи наружной поверхности чердачного перекрытия н = 12 Вт/(м2.С).

Нормируемый температурный перепад между температурой внутреннего воздуха tв и температурой внутренней поверхности ограждающей конструкции, для жилых помещений tн = 3 (таб.5 СНиП 23-02-2003).

                                       

Состав конструкции бесчердачного перекрытия :

     

1 – водоизоляционный ковер, теплопроводность 1= 0,27 Вт/°С, толщина слоя 4,5 мм, 2 – асфальтовая стяжка, теплопроводность 2= 1,05 Вт/°С,м, толщина слоя 10 мм, 3 – утеплитель , теплопроводность 3= 0,041 Вт/°С, 4– плита перекрытия, теплопроводность 6= 1,69 Вт/°С, толщина слоя 90 мм

1.Найдем требуемое сопротивление теплопередаче по санитарно-гигиеническим условиям R0тр.

3. Определяем необходимую толщину утепляющего слоя.

Теплотехнический расчет ведется из условия равенства общего термического сопротивления Rо требуемому, т.е  Rо= 1,76 .

Термическое сопротивление ограждающей конструкции может быть представлено как сумма термических сопротивлений отдельных слоев, т.е.

Принимаем толщину утепляющего слоя минераловатных плит равной 50мм.

Общее сопротивление теплопередаче ограждающей конструкции:

Условие R0 = 1,98 м2·С/Вт    R0тр = 1,76 м2·С/Вт   выполнено, следовательно конструкция соответствует требованиям а) п.5.1 СНиП 23-02-2003.

4. Проверка выполнения санитарно-гигиенических требований тепловой защиты здания.

Определяем температуру внутренней поверхности стены по формуле:

Разница температур внутреннего воздуха и внутренней поверхности стены:

 Перепад температур меньше нормируемого (таб.5 СНиП 23-02-2003) Конструкция соответствует требованиям б) п.5.1 СНиП 23-02-2003


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1.  СНиП 23-02-2003. Тепловая защита зданий.
  2.  СНиП 23-01-99. Строительная климатология.
  3.  СП 23-101-2004. Проектирование тепловой защиты зданий.
  4.  Худяков А.Д. Теплозащита зданий в северных условиях: Учебное пособие для вузов. – М: Издательство АСВ, 2001- 107с., с илл.
  5.  Справочник по теплоснабжению и вентиляции (издание 4-е). Книга 1-я. Р.В. Щекин, С.М. Кореневский – Киев, 1976 – 416с.

refleader.ru

2.2.1. Теплотехнический расчёт ограждающих конструкций

По методике СНиП расчёт передачи теплового потока выполняется при условии одномерной задачи (передача теплового потока в одном направлении).

Рис. 2.1 – Расчётная схема

Таблица 2.1 – Теплофизические характеристики материалов ограждения

Наименование материала слоя

,

м

,

кг/м3

Теплофизические характеристики

S

Известково-песчаный раствор

0,015

1600

0,81

9,76

0,12

Кирпичная кладка

0,51

1800

0,81

10,12

0,11

Утеплитель

(пенополиуретан)

Х

60

0,041

0,55

0,05

Цель расчёта: определение толщины утеплителя и наружного ограждения целом по условию теплопередачи:

(1) – основное условие расчёта

R0 – общее термическое сопротивление наружного ограждения в соответствии с расчётной схемой (определяется по формуле (2)):

(2)

- сумма термических сопротивлений отдельных слоёв наружного ограждения. Каждое термическое сопротивление определяется по формуле (3):

(3)

- толщина каждого слоя наружного ограждения

- коэффициент теплопроводности

(Вт/мС)

- коэффициент тепловосприятия

- коэффициент теплоотдачи

=8,7 Вт/мС

=23 Вт/мС

(2’)

- требуемое значение термического сопротивления, которое обеспечивает нормальную эксплуатацию ограждающих конструкций. Требуемое сопротивление определяется исходя из условий санитарно-гигиенических требований и условия обеспечения экономической эффективности применяемых материалов наружного ограждения.

(4)

2.2.1.1 Определение толщины утеплителя наружного ограждения из условий санитарно-гигиенических требований

(5)

tB – температура внутреннего воздуха

tН – температура наружного воздуха

n – коэффициент, учитывающий положение наружной поверхности наружного ограждения по отношению к наружному воздуху

n = 1 (для наружных стен)

- нормированный температурный перепад между температурой внутреннего воздуха и внутренней поверхностью наружного ограждения.

=4оС (для наружных стен)

(2’)

Из уравнения (2’) находим - толщину слоя утеплителя.

м

2.2.1.2. Определение толщины утеплителя наружного ограждения из условий экономической эффективности применяемых строительных материалов.

определяется по таблице в зависимости от ГСОП (градусо-суток отопительного периода).

(6)

tВ – температура внутреннего воздуха

tот.пер. – средняя температура за отопительный период

tот.пер= -13,2 оС

zот.пер. – продолжительность (в сутках) отопительного периода

zот.пер= 224 сут

=4,16 (определяется по интерполяции)

Подставляем полученное значение в формулу (2’):

м

Окончательно принимаем наибольшее из значений м.

Вывод: Запроектированная конструкция наружного ограждения соответствует тепло – техническим требованиям СНиП.

2.2.2. Расчёт наружного ограждения на инфильтрацию.

(1) - сопротивление воздухопроницанию ограждающих конструкций жилого здания должно быть не менее требуемого сопротивления воздухопроницания.

- фактическое сопротивление наружного ограждения на инфильтрацию, которое определяется в соответствии с расчётной схемой:

(3)

Сопротивление инфильтрации каждого отдельного слоя наружного ограждения

= 142

= 18

= 79

= 373

(3)

- разность давлений по обе стороны наружного ограждения. определяется двумя факторами:

- разной плотностью воздуха

- ветровым напором

(4)

H – высота здания (от спланированной поверхности грунта до верха карниза)

- удельный вес наружного воздуха

- удельный вес внутреннего воздуха

- максимальная из средних скоростей ветра по румбам за январь

GH – нормированный расход воздуха

GH = 0,5 кг/м2ч

Вывод: по результатам расчёта условие (1) выполняется.

studfile.net


Смотрите также




© 2008- GivoyDom.ru